# TERJADINYA *HIGH TANK PRESSURE* LPG DI KAPAL LPG/C GAS WIDURI PADA SAAT *SHIP TO SHIP* DENGAN KAPAL LPG/C VIVIT DUBHE



APRIZAL MURSALIM
NIT. 20.41.042
NAUTIKA

PROGRAM PENDIDIKAN DIPLOMA IV PELAYARAN POLITEKNIK ILMU PELAYARAN MAKASSAR TAHUN 2024

# TERJADINYA HIGH TANK PRESSURE LPG DI KAPAL LPG/C GAS WIDURI PADA SAAT SHIP TO SHIP DENGAN KAPAL LPG/C VIVIT DUBHE

Skripsi

Sebagai Salah Satu Syarat untuk Menyelesaikan Program Pendidikan Diploma IV Pelayaran

Program Studi Nautika

Disusun dan Diajukan oleh

APRIZAL MURSALIM NIT. 20.41.042

PROGRAM PENDIDIKAN DIPLOMA IV PELAYARAN POLITEKNIK ILMU PELAYARAN MAKASSAR TAHUN 2024

#### **SKRIPSI**

# TERJADINYA HIGH TANK PRESSURE LPG DI KAPAL LPG/C GAS WIDURI PADA SAAT SHIP TO SHIP DENGAN KAPAL LPG/C VIVIT DUBHE

Disusun dan Diajukan Oleh:

APRIZAL MURSALIM

NIT. 20.41.042

Telah Dipertahankan di Depan Panitia Ujian Skripsi

Pada Tanggal, 14 November 2024

Menyetujui,

19

Pembimbing I

Pembimbing II

Capt. Hadi Setiawan, M.T., M.Mar

NIP. 19751241998081001

(A)

Masrupah, S.S.T., M.Adm., S.D.A., M.Mar

NIP. 198001102008122001

Mengetahui,

a.n. Direktur

Politeknik Ilmu Pelayaran makassar

Pembantu Direktur I

Ketua Program Studi Nautika

Capt. Faisa Saransi, M.T., M.Mar

NIP. 19750329 199903 1 002

Subehana Rachman S.A.P., M.Adm.S.D.A.

NIP. 197809082005022001

#### **PRAKATA**

Segala puji dan Syukur penulis panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat dan karunianya sehingga penulis dapat menyelesaikan penelitian ini yang berjudul: Terjadinya *High Tank Pressure* di Kapal LPG/C Gas Widuri pada saat *Ship to Ship* dengan Kapal LPG/C Vivit Dubhe. Adapun maksud dan tujuan dari penyusunan skripsi ini adalah memenuhi persyaratan untuk menyelesaikan program Diploma IV di Politeknik Ilmu Pelayaran Makassar.

Penulis menyadari bahwa dalam proses penyusunan skripsi ini, terdapat berbagai hambatan yang dihadapi. Namun, berkat dukungan materil dan moral dari berbagai pihak, penulis akhirnya dapat menyelesaikan skripsi ini dengan baik. Penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada orang tua, Bapak MURSALIM dan Ibu HASNAWATI, yang selalu memberikan dukungan, kasih sayang, dan semangat yang tiada henti dalam segala kondisi. Terima kasih atas doa, kasih sayang, dan nasihat yang telah diberikan sepanjang perjalanan ini.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan, hal ini disebabkan oleh keterbatasan penulis dalam proses penyusunannya. Oleh karena itu, kritik dan saran yang membangun dari berbagai pihak sangat diharapkan untuk meningkatkan kualitas karya ilmiah ini.

Pada kesempatan ini penulis mengucapkan terima kasih yang sebesar-besarnya kepada :

- Bapak Capt. Rudy Susanto, M.Pd., selaku Direktur Politeknik Ilmu Pelayaran Makassar.
- Bapak Capt. Faisal Saransi, MT., M.Mar selaku Pembantu Direktur I Politeknik Ilmu Pelayaran Makassar.
- 3. Bapak Dr. Capt. Moh. Aziz Rohman, M., M. Mar selaku Pembantu Direktur II Politeknik Ilmu Pelayaran Makassar.

- 4. Ibu Capt. Oktavera Sulistiana, M. T., M. Mar selaku Pembantu Direktur III Politeknik Ilmu Pelayaran Makassar.
- 5. Ibu Subehana Rachman, S.A.P., M.Adm.S.D.A. selaku ketua Prodi Nautika.
- Bapak Capt. Hadi Setiawan, MT., M.Mar selaku pembimbing I dan Ibu Masrupah, S.Si.T., M.Adm.S.D.A., M.Mar selaku pembimbing II pada penulisan Skripsi ini.
- Seluruh crew LPG/C Gas Widuri. Terutama kepada Capt. Thomas Christian, Chief Officer Hilmy Fatra dan senior yang sangat saya hormati Chief Engineer Theofilus Ranteallo yang selalu membimbing dan menjaga saya selama melaksanakan Praktek Laut (PRALA).
- 8. Bapak-Ibu Dosen dan seluruh Staf Politeknik Ilmu Pelayaran Makassar.
- 9. Kepada Rekan-rekan Taruna/Taruni Angkatan XLI yang telah memberikan bantuan dalam penulisan skripsi ini.
- 10. Last but not least, I wanna thank me. I wanna thank me for believing in me. I wanna thank me for doing all this hard work. I wanna thank me for having no days off. I wanna thank me for, for never quitting. I wanna thank me for tryna do more right than wrong. I wanna thank me for just being me at all times.

Penulis menyadari bahwa skripsi ini masih jauh dari sempurna, oleh karena itu, kritik dan saran yang membangun sangat diharapkan untuk perbaikan di masa yang akan datang. Semoga skripsi ini dapat memberikan manfaat dan kontribusi bagi pengembangan ilmu pengetahuan, khususnya di bidang maritim dalam meningkatkan keselamatan di atas kapal.

Makassar, 14 November 2024

APRIZAL MURSALIM

NIT. 20.41.042

## PERNYATAAN KEASLIAN SKRIPSI

Nama : APRIZAL MURSALIM

Nomor Induk Taruna : 20.41.042

Jurusan : NAUTIKA

Menyatakan bahwa skripsi ini dengan judul:

# Terjadinya High Tank Pressure Lpg Di Kapal Lpg/C Gas Widuri Pada Saat Ship To Ship Dengan Kapal Lpg/C Vivit **Dubhe**

Merupakan karya asli. Seluruh ide yang ada dalam skripsi ini, kecuali tema dan yang saya nyatakan sebagai kutipan, merupakan ide yang saya susun sendiri.

Jika pernyataan di atas terbukti sebaliknya, maka saya bersedia menerima sanksi yang ditetapkan oleh Politeknik Ilmu Pelayaran Makassar.

Makassar, 14 November 2024

**Penulis** 

#### **ABSTRAK**

APRIZAL MURSALIM, 2024. "Terjadinya High Tank Pressure LPG Di Kapal LPG/C Gas Widuri Pada Saat Ship To Ship Dengan Kapal LPG/C Vivit Dubhe" (dibimbing oleh Hadi Setiawan dan Masrupah).

Liquefied Petroleum Gas merupakan gas alam yang banyak digunakan karena mudah dikemas dan dapat didistribusikan dengan biaya yang murah. Komponen utama dari LPG ini terdiri dari hidrokarbon ringan berupa propana dan butana. LPG/C Gas Widuri pada saat mengangkut LPG ini harus memperhatikan suhu dan tekanan tangki untuk menghindari terjadinya tekanan tinggi.

Penelitian ini menggunakan metode pendekatan deskriptif kualitatif. Dalam penelitian, data dikumpulkan melalui observasi, wawancara, dan tinjauan pustaka yang berkaitan dengan penelitian ini.

Hasil dari penelitian ini disimpulkan bahwa penyebab terjadinya tekanan tinggi pada tangki LPG di kapal LPG/C Gas Widuri pada saat *Ship to Ship* dengan kapal LPG/C Vivit Dubhe dikarenakan tingginya temperatur tangki LPG sebelum dan saat proses pemuatan dan tingginya temperatur muatan dari pihak *mothership* yang melakukan *discharging* yang tidak dapat disesuaikan dengan kondisi tangki kapal. Perlu adanya pencegahan tekanan tinggi pada tangki LPG di kapal LPG/C Gas Widuri pada saat *Ship to Ship* dengan kapal LPG/C Vivit Dubhe untuk terjadinya kondisi yang dapat membahayakan saat proses pemuatan. Dilakukan penyesuaian suhu tangki LPG sebelum dan saat proses pemuatan serta melakukan penyesuaian temperatur muatan dengan pihak *mothership* agar tidak terjadi tekanan tinggi pada tangki muat.

**Kata kunci**: Tekanan Tinggi, *Liquefied Petroleum Gas, Ship to Ship.* 

#### **ABSTRACT**

APRIZAL MURSALIM, 2024. "The Occurrence of High Pressure Tank LPG On The Ship LPG/C Gas Widuri When Ship To Ship With Ship LPG/C Vivit Dubhe" (supervised by Hadi Setiawan and Masrupah).

Liquefied Petroleum Gas is natural gas that is widely distributed because it is easy to package and distribute at low cost. The main component of LPG consist of light hydrocarbons in the form of propane and butane. Widuri Gas LPG/C When transporting LPG, it's necessary pay attention to the tank pressure and temperature to avoid high pressure.

This research uses a qualitative descriptive approach method. In this research, data was collected through observation, interviews and literature studies related to this research.

The results of this research concluded that the cause of high pressure in the LPG tank on the LPG/C Gas Widuri ship during Ship to Ship with the LPG/C ship Vivit Dubhe was due to the high temperature of the LPG tank before and during the loading process and the high temperature of the cargo from the mothership. carry out discharging which cannot be adjusted to the condition of the ship's tank. It is necessary to prevent high pressure in the LPG tank on the LPG/C Gas Widuri ship during Ship to Ship with the LPG/C Vivit Dubhe ship so that conditions that can be dangerous do not occur during the cargo loading process. Adjust the LPG tank temperature before and during the loading process and adjust the cargo temperature with the mothership to avoid high pressure in the loading tank.

**Key words**: High pressure, Liquefied Petroleum Gas, Ship to Ship.

# **DAFTAR ISI**

|                             |                       |                               | Halaman |
|-----------------------------|-----------------------|-------------------------------|---------|
| HALA                        | AMA                   | I JUDUL                       | i       |
| HALA                        | ii                    |                               |         |
| HALA                        | iii                   |                               |         |
| PRA                         | iv                    |                               |         |
| PERNYATAAN KEASLIAN SKRIPSI |                       |                               | vi      |
| ABS                         | vii                   |                               |         |
| ABS                         | viii                  |                               |         |
| DAF1                        | TAR IS                | SI                            | ix      |
| DAF1                        | xi                    |                               |         |
| DAF1                        | TAR G                 | SAMBAR                        | xii     |
| BAB                         | I PE                  | ENDAHULUAN                    |         |
|                             | A.                    | Latar Belakang                | 1       |
|                             | B.                    | Rumusan Masalah               | 5       |
|                             | C.                    | Tujuan Penelitian             | 5       |
|                             | D.                    | Manfaat Penelitian            | 5       |
| BAB                         | B II TINJAUAN PUSTAKA |                               |         |
|                             | A.                    | Sistem Pemuatan               | 7       |
|                             | B.                    | Liquefied Petroleum Gas (LPG) | 20      |
|                             | C.                    | Ship to Ship Operation        | 22      |
|                             | D.                    | Kapal LPG/C                   | 22      |
|                             | E.                    | Model Berpikir                | 26      |
|                             | F.                    | Pertanyaan Penelitian         | 27      |
| BAB                         | III N                 | METODE PENELITIAN             |         |
|                             | A.                    | Jenis Penelitian              | 29      |
|                             | B.                    | Waktu dan Tempat Penelitian   | 29      |
|                             | C.                    | Definisi Konsep               | 30      |
|                             | D                     | I Init Analisis               | 30      |

|                | E.                                    | Teknik Pengumpulan Data               | 31 |  |  |
|----------------|---------------------------------------|---------------------------------------|----|--|--|
|                | F.                                    | Prosedur Pengolahan dan Analisis Data | 31 |  |  |
| BAB            | B IV. HASIL PENELITIAN DAN PEMBAHASAN |                                       |    |  |  |
|                | A.                                    | Hasil Penelitian                      | 33 |  |  |
|                | B.                                    | Pembahasan                            | 38 |  |  |
| BAB            | AB V SIMPULAN DAN SARAN               |                                       |    |  |  |
|                | A.                                    | Simpulan                              | 49 |  |  |
|                | B.                                    | Saran                                 | 49 |  |  |
| DAFTAR PUSTAKA |                                       |                                       | 51 |  |  |
| LAMPIRAN       |                                       |                                       |    |  |  |
| DAFT           | DAFTAR RIWAYAT HIDUP                  |                                       |    |  |  |

# **DAFTAR TABEL**

| Tabel     |                              | Halaman |
|-----------|------------------------------|---------|
| Tabel 4.1 | Loading Agreement Gas Widuri | 33      |

# DAFTAR GAMBAR

| Gambar      |                                                        | Halaman |
|-------------|--------------------------------------------------------|---------|
| Gambar 2.1  | Tangki tipe A prismatic                                | 10      |
| Gambar 2.2  | Tipe Tangki A LPG Carrier (fully-refrigerated          | 11      |
| Gambar 2.3  | Tipe Tangki B – LNG Carrier                            | 12      |
| Gambar 2.4  | Tipe Tangki C (semi-refrigerated)                      | 13      |
| Gambar 2.5  | Tipe Tangki C (fully-pressurised)                      | 13      |
| Gambar 2.6  | Perbandingan tekanan dan volume pada hukum Boyle       | 15      |
| Gambar 2.7  | Perbandingan volume dan temperatur pada hukum Charles  | 15      |
| Gambar 2.8  | Perbandingan tekanan dan temperatur pada hukum tekanan | 16      |
| Gambar 2.9  | Reliquefaction cycle Two-stage                         | 19      |
| Gambar 2.10 | Gas Ambalat (fully-pressurised)                        | 24      |
| Gambar 2.11 | Kapal semi pressurised                                 | 25      |
| Gambar 2.12 | VLGC Pertamina Gas 1 (fully-refrigerated)              | 26      |
| Gambar 2.13 | Model Berpikir                                         | 27      |
| Gambar 4.1  | Gas Widuri Ship to Ship dengan LPG/V Vivit Dubhe       | 34      |
| Gambar 4.2  | Pressure Tank High                                     | 35      |
| Gambar 4.3  | Temperatur Muatan                                      | 36      |
| Gambar 4.4  | Monitor Temperatur                                     | 40      |
| Gambar 4.5  | Monitor Reliquefaction System                          | 43      |
| Gambar 4.6  | Liquid Line                                            | 45      |

# BAB I PENDAHULUAN

# A. Latar Belakang

Kapal gas adalah merupakan bagian penting dari infrastruktur global untuk mengangkut *liquefied natural gas, liquefied petroleum gas* dan *chemical gas* seperti etana. Kapal tanker pengangkut gas adalah kapal yang dirancang khusus untuk mengangkut zat gas. Namun, isi kapal tanker gas tersebut diangkut dalam bentuk cair atau *liquid*, semua kapal tanker gas adalah kapal yang dirancang dan dibangun untuk menyimpan dan mengangkut gas minyak bumi atau bahan kimia yang berbentuk cair dari satu lokasi ke lokasi lain. Kapal pengangkut LPG (*liquefied petroleum gas*) mempunyai sejarah yang sangat menarik. LPG, yang terutama terdiri dari *propane* dan *butane* telah menjadi bahan bakar penting dan produk kimia dalam perdagangan internasional sejak pertengahan abad ke-20. Utamanya lpg digunakan untuk bahan bakar dalam rumah tangga dan industri, tetapi juga digunakan sebagai alternatif bahan bakar yang bersih.

Kapal tanker berjenis *Gas Carrier* ini merupakan sarana transportasi khusus yang dirancang untuk mengangkut lpg berbentuk *liquid*. Kapal yang mengangkut lpg ini juga didesain untuk membawa muatan dengan jumlah yang besar, dengan volume berkisar antara 500 m³ hingga 11.000 m³, untuk kapal yang berukuran kecil tipe *pressurized* dan untuk kapal dengan tipe *fully-refirgerated* dengan kapasitas muatannya yang mencapai 80.000 m³ atau yang disebut dengan VLGC (*very large gas carrier*).

Liquefied petroleum gas terbuat dari bahan bakar gas cair yang tercampur dalam unsur hidrokarbon gas alam, terutama butana (C4H10) dan propana (C3H8). Angkutan laut yang termasuk kriteria dalam hal ini adalah kapal tanker gas yang dirancang

khusus untuk mengangkut muatan LPG. Gas minyak bumi cair (LPG) terdiri dari propana, butana dan campuran keduanya. Gas cair dapat berada dalam keadaan cair pada kondisi suhu sekitar dan tekanan sedang. Penggunaan utama LPG adalah sebagai bahan bakar untuk pembangkit listrik dan keperluan industri lain, seperti pemotongan logam dan sebagai bahan baku petrokimia. Butana yang disimpan dalam tabung berbentuk botol yang dikenal sebagai gas botol, sering digunakan sebagai bahan bakar untuk pemanas dan memasak di daerah terpencil. Umumnya dianggap sebagai sumber dasar panas/ bahan bakar untuk negara-negara berkembang. *Propane* juga digunakan sebagai gas botolan, terutama di negara beriklim dingin.

Liquefied petroleum gas (LPG) memiliki berat jenis dengan spesifikasi rendah, tekanannya yang tinggi, dan gaya muai yang besar. LPG merupakan bagian penting dari pasokan energy karena sifatnya yang mudah terbakar atau combustible. Oleh karena itu, LPG banyak digunakan sebagai bahan baku dari industry (bahan baku petrokimia), bahan bakar transportasi, sumber energy (pembangkit listrik), dan sebagai bahan bakar dalam bidang industri.

Hal ini sejalan dengan adanya kebijakan pemerintah Indonesia mengenai konversi minyak tanah ke LPG. Penggunaan LPG yang meningkat namun tidak dibarengi dengan pemasok LPG, hal ini sering kali berdampak pada menipisnya LPG di awal tahun 2013. Kemudian, Pertamina yang sebagai pemasok impor Indonesia yang sedang berkembang untuk memenuhi kebutuhan energi, khususnya LPG. Program konversi ini bertujuan untuk mengurangi beban APBN (Anggaran Pendapatan dan Belanja Negara) terkait subsidi minyak tanah. Selain itu, inisiatif ini juga diharapkan memberikan keuntungan bagi kilang-kilang minyak di Indonesia, karena produk minyak tanah dapat memberikan nilai tambah, terutama karena

bahan bakar penerbangan tidak disubsidi, meningkatkan produksi minyak solar, serta mengurangi ketergantungan pada impor solar. Di Indonesia, LPG terutama digunakan sebagai bahan bakar untuk peralatan dapur, seperti kompor gas. Selain itu, LPG juga sering dimanfaatkan sebagai bahan bakar kendaraan (meskipun mesin kendaraan perlu dimodifikasi terlebih dahulu). Berdasarkan latar belakang ini, pengangkutan gas cair melalui jalur laut menjadi semakin penting dan sering dilakukan.

Kapal tanker berjenis gas carrier memiliki beberapa tipe yaitu, bertekanan penuh (fully pressurized), semi pendingin (semirefrigerated), dan berpendingin penuh (fully-refrigerated). Kapal pengangkut gas pertama kali diperkenalkan ke dalam pelayaran internasional dengan jenis atau sistem fully pressurized. Pada tahun 1959, kapal yang dilengkapi dengan sistem semi pendingin diluncurkan dan pada tahun 1960-an sebuah kapal desain baru yang dilengkapi dengan sistem pendingin penuh (fully-refrigerated) diperkenalkan, dan dimasukkan ke dalam VLGC karena u peningkatan ukuran dan kapasitas muatannya sebesar 75.000 hingga 85.000 m<sup>3</sup> yang termasuk dalam kapal golongan Very large gas carrier (VLGC) telah berkembang pesat. Di Indonesia, kapal LPG sering digunakan dalam dunia pelayaran terutama pada PT. Pertamina International perusahan Shipping untuk mendistribusikan bahan bakar gas ke berbagai daerah di Indonesia. LPG/C Gas Widuri merupakan salah satu kapal jenis pengangkut Gas milik perusahan pelayaran PT. Pertamina International Shipping.

Meskipun LPG dapat disalurkan melalui transportasi darat dan laut, namun secara umum seluruh jumlah gas bumi diangkut melalui transportasi laut. Oleh karena itu, pada saat pengangkutan LPG ada beberapa hal yang harus diperhatikan yaitu temperature acuan (*reference temperature*) atau temperatur yang menjadi

pedoman. Pada saat pemuatan perlu diketahui nilai tekanan tangki, ketika suhu meningkat, tekanan juga meningkat dan sebaliknya.

Dalam pengangkutan gas melalui jalur laut, tekanan tinggi di dalam tangki selama proses pemuatan tidak dapat diperkirakan. Karena resiko berbahaya dapat timbul, yakni tekanan balik (back pressure) dari pipa kapal ke terminal atau mothership, karena jika tekanan di dalam tangki kargo melebihi tekanan yang ditentukan, terdapat risiko tinggi terjadinya ledakan atau kebakaran di dalam tangki kargo. dan mengakibatkan katup pengaman (safety relief valve) atau uap muatan yang terlepas dari katup pengaman tangki melampaui tekanan yang telah ditetapkan. Oleh karena itu, prosedur penanganan muatan yang benar penting agar proses pemuatan dapat berjalan secara efisien.

Kapal LPG/C Gas Widuri adalah kapal pengangkut LPG yang memiliki sistem *fully refrigerated* yaitu di mana dalam penanganan muatannya bergantung pada suhu dan tekanan kargo. Proses bongkar muat kargo pada kapal LPG dengan sistem pendingin penuh *(fully refrigerated)* ini penting memperhatikan tekanan dan suhu pada tangki kargo, karena LPG dimuat pada tekanan luar dan suhu rendah. Temperatur tinggi pada saat memuat dapat meningkatkan tekanan pada tangki muat hingga melampaui batas tekanan yang telah ditentukan dalam tangki.

LPG/C Gas Widuri saat melakukan proses muat LPG dengan metode *Ship to Ship Operation* dengan LPG/C Vivit Dubhe di Laconia Gulf, Greece. Tanggal 20 September 2023 pada pukul 16:30 LT terjadi *high pressure* pada tangki muat yang diakibatkan karena kurangnya komunikasi dengan pihak kapal dan pihak yang terkait tentang muatan yang dimuat, serta keterbatasan peralatan pada saat *loading* muatan dalam kondisi yang tidak normal. Mengingat permasalahan tersebut, maka dilakukan upaya untuk mengatasi permasalahan tersebut agar proses *loading* dapat

berjalan dengan lancar dan tidak terjadi kegagalan pada saat pelaksanaan pemuatan yang berdampak pada jalur pelayaran dan operasional serta menimbulkan kerugian. Dapat meyebabkan kerusakan dan ledakan di atas kapal. Berdasarkan latar belakang dari masalah di atas, maka perlu dilakukan penelitian sehingga penulis tertarik mengangkat permasalahan tersebut yaitu, "TERJADINYA HIGH TANK PRESSURE LPG DI KAPAL LPG/C GAS WIDURI PADA SAAT SHIP TO SHIP DENGAN KAPAL LPG/C VIVIT DUBHE".

### B. Rumusan Masalah

Berdasarkan latar belakang permasalahan yang telah diuraikan, maka penulis mengambil rumusan masalah yaitu: Mengapa terjadi tekanan tinggi pada tangki LPG di kapal LPG/C Gas Widuri pada saat *Ship to Ship* dengan kapal LPC/C Vivit Dubhe?

# C. Tujuan Penelitian

Tujuan dari penelitian ini adalah, penulis mengangkat masalah mengenai *high pressure* pada tangki kargo, karena pemeliharaan suhu dan tekanan pada saat memuat serta upaya penanganan pada saat pemuatan merupakan hal penting. Tujuan yang ingin dicapai dalam penelitian ini yaitu:

Untuk mengidentifikasi penyebab terjadinya *high pressure* pada tangki muat di kapal LPG/C Gas Widuri selama melaksanakan *Ship to Ship Operation* dengan kapal LPG/C Vivit Dubhe dan mengantisipasi terjadinya masalah tersebut terulang.

### D. Manfaat Penelitian

Hasil dari penelitian ini diharapkan dapat memberikan manfaat bagi pihak terkait dari berbagai sudut pandang teoritis dan

### praktis.

- 1. Secara teoritis, hasil penelitian ini dapat digunakan sebagai referensi atau acuan dalam bidang terkait untuk mengatasi terjadinya tekanan tinggi (high pressure) pada tangki muat di kapal LPG. Selain itu, temuan ini juga dapat memberikan masukan bagi para taruna yang kelak akan bekerja di kapal pengangkut gas, khususnya jenis kapal fully-refrigerated, agar mereka dapat memahami karakteristik muatan dan faktor-faktor yang menyebabkan peningkatan tekanan dalam tangki.
- Secara praktis, hasil penelitian ini dapat dijadikan masukan untuk seluruh awak kapal yang bekerja dan juga bagi perusahaan yang menerapkan SOP pemuatan untuk menangani terjadinya kenaikan tekanan di dalam tangki muatan agar menunjang proses muat berjalan dengan lancar.

# BAB II TINJAUAN PUSTAKA

#### A. Sistem Pemuatan

Menurut Martopo (2001:11) bahwa penanganan muatan dilakukan dengan cara memuatnya ke atas kapal, dan cara pemeliharaan muatan dan memperhatikan keselamatan muatan yang didasarkan pada prinsip-prinsip pemuatan :

- a. Melindungi kapal (Protect the Ship)
   Menjamin keselamatan kapal pada saat pelaksanaan kegiatan kargo operasi (cargo operation) maupun sedang dalam pelayaran.
- b. Melindungi muatan (Protect the Cargo)
  Berdasarkan hukum Internasional, pihak kapal yang bertanggung jawab atas keselamatan dan keamanan kargo, muatan yang dimuat ke dalam kapal harus sampai di tempat tujuan dengan selamat, oleh karena itu pada saat kegiatan kargo operasi harus dilakukan secara teratur untuk mencegah muatan tersebut mengalami kerusakan.
- c. Keselamatan awak kapal dan pekerja (Safety of Crew and Long Shoreman)
   Untuk menjamin keselamatan parak awak kapal selama kegiatan kargo operasi perlu diperhatikan tugas awak kapal selama

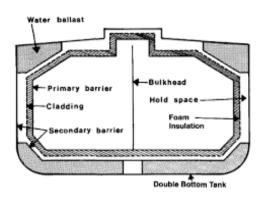
kegiatan kargo operasi.

d. Bongkar muat secara cepat teratur dan sistematik Bongkar yang cepat, teratur dan sistematis adalah untuk menggunakan waktu dan biaya yang efektif dan efisien untuk mendapatkan hasil yang maksimal selama kegiatan bongkar muat.

Menurut Bayu (2023:19), pengertian pemuatan adalah suatu barang yang diangkut atau ditransfer secara sistemastis baik di laut

ataupun di terminal. Keuntungan dan pendapatan bagi perusahaan pelayaran komersial sangat menentukan kelangsungan hidup perusahaan dan pembiayaan kegiatan pelabuhan melalui proses transportasi barang.

- a. Muatan yang diangkut oleh kapal LPG/C Gas Widuri terdiri dari propana dan butana. Menurut McGuire dan White (2014:95), metode bongkar muat LPG dapat bervariasi tergantung pada jenis kapal, spesifikasi muatan, dan lokasi penyimpanan di terminal. Karena propana dan butana merupakan bahan yang mudah terbakar, penanganan muatannya harus dilakukan dengan sangat hati-hati. Kedua bahan ini berbahaya, mudah meledak, dan termasuk dalam kategori IMDG Code 2.1. Oleh karena itu, proses pemuatan dan pembongkaran muatan ini memerlukan prosedur yang sangat ketat untuk menjamin keselamatan selama pelaksanaan.
- b. Berikut ini adalah prosedur pemuatan di LPG/C Gas Widuri :
  - 1) Melaksanakan pengetesan dan pengecekan alat keselamatan seperti, high level alarm, dan Emergency shutdown device.
  - 2) Menghubungkan *manifold* kapal ke manifold *mothership* dengan *hose cargo*.
  - 3) Menyiapkan alat keselamatan.
  - 4) Melakukan *line up*, pastikan katup pemuatan setiap tangki terbuka dan melakukan *leak test*.
  - 5) Memberitahukan kondisi tangki kapal kepada mualim jaga.
  - 6) Memuat muatan dari mothership.
  - 7) Memeriksa kecepatan muatan yang masuk/keluar per jamnya.
  - 8) Melaksanakan blowing atau tank line clearing.
  - 9) Melakukan tank inspection disetiap tangki.
  - 10) Cargo hose dilepas dari manifold.
  - 11) Melakukan kalkulasi *cargo* dan dokumen pemuatan.


Dari beberapa penjelasan jelas bahwa kegiatan bongkar

muat adalah kegiatan memuat atau menurunkan barang dari suatu tempat ke tempat lain. Pemuatan seringkali dilakukan dengan menggunakan alat yang dapat mempercepat kegiatan pemuatan.

Menurut *OERC Academy* (2004:38), kapal yang mengangkut LPG yang berpendingin penuh menggunakan tekanan udara luar untuk memuat LPG. Akibatnya, LPG harus berada pada temperatur yang mencapai titik didih. Menurut McGuire dan White (2000), tangki independen yaitu, *self-supporting* (menyokong diri sendiri) tidak termasuk bagian dari struktur lambung, dan tidak mempengaruhi kekuatan lambung. Tangki tipe A (*prismatic*) memiliki bentuk prismatik dan datar, tipe tangki ini dirancang untuk tekanan maksimum yang diizinkan sebesar 0,7 bar, memastikan muatan yang dimuat dalam kondisi benar-benar dingin (*fully refrigerated*).

Menurut ICS, OCIMF & SIGTTO (2016:118) bahan yang digunakan untuk tipe tangki A dan tipe tangki B itu sama. Tangki tipe A tidak dirancang berdasarkan konsep kebocoran sebelum kegagalan yang digunakan untuk tipe tangki B. Oleh karena itu, untuk menjamin keselamatan ketika terjadi kebocoran pada tangki kargo diperlukan sistem penahanan sekunder berdasarkan *IGC Code*. Sistem penahanan sekunder ini disebut penghalang sekunder dan merupakan fitur dari semua kapal dengan tangki tipe A yang mampu mengangkut muatan dengan suhu di bawah minus 10°C (-10°C).

**Gambar 2.1 Tangki tipe A prismatic** 



Sistem penahanan kargo mencakup, jika dipasang, penghalang primer dan sekunder, insulasi terkait dan setiap ruang di antaranya serta setiap struktur di dekatnya yang mungkin diperlukan untuk menopang elemen-elemen ini. jenis tangki kargo dasar yang digunakan pada kapal pengangkut gas adalah sebagai berikut:

## a. Tangki Tipe A

Tangki tipe A terutama terdiri dari permukaan datar. berdasarkan IGC Code, tekanan tangki maksimum yang diizinkan di ruang uap untuk sistem ini yaitu 0,7 bar. Ini berarti muatan didinginkan sepenuhnya (fully-refrigerated) dan diangkut pada atau mendekati tekanan atmosfer (biasanya di bawah 0,25 bar). Tangki tipe A adalah tangki self-supporting prismatic yang memerlukan pengaku internal konvensional.

Aft bulkhead of No. 3 cargo tank

Woter ballast

Promary barrier

Claddarg

Bodd space

2x bulkhead valves

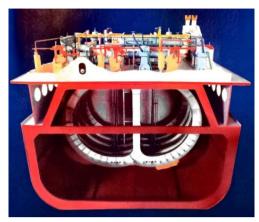
**Gambar 2.2 Tipe Tangki A LPG Carrier (fully-refrigerated)** 

# b. Tangki Tipe B

Tangki tipe B dapat dibuat dari permukaan datar atau dapat berbentuk bola. Sistem pengungkung jenis ini merupakan subjek analisis tegangan yang jauh lebih rinci dibandingkan sistem tipe A. Susunan tangki tipe B yang paling umum adalah tangki berbentuk bola, yang dikenal sebagai tipe lumut. Cangkang berbentuk bola biasanya terbuat dari aluminium dan sistem pendukungnya berupa cincin khatulistiwa, pada ketinggian pertengahan, yang menghubungkan cangkang ke rok silinder, yang pada gilirannya ditopang pada lambung bagian dalam. Tangki bulat tipe B hampir secara eksklusif diterapkan pada kapal LNG dan jarang digunakan dalam perdagangan LPG.

Tank weather cover

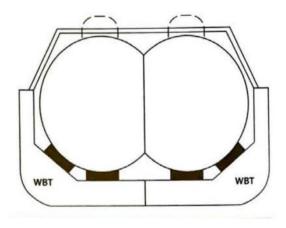
Spray nozzles


Drip tray

Gambar 2.3 Tipe Tangki B - LNG Carrier

# c. Tipe Tangki C

Tangki Tipe C (semi-refrigerated), biasanya berbentuk bejana tekan berbentuk bola atau silinder dengan tekanan desain lebih besar dari 2 bar. Bejana berbentuk silinder dapat ditempatkan secara vertikal atau horizontal. Sistem penahanan jenis ini umumnya digunakan pada kapal tanker pengangkut gas jenis semi-refrigerated. Pada kapal semi-refrigerated, tangki tersebut juga dapat digunakan pada kapal jenis fully-refrigerated dengan menggunakan baja suhu rendah yang sesuai untuk konstruksi tangki. Tangki Tipe C dirancang dan dibangun mengikuti spesifikasi bejana bertekanan konvensional, yang memungkinkan dilakukan analisis tegangan secara akurat. Tangki muatan dan peralatan terkait dirancang untuk beroperasi pada tekanan kerja 5-7 bar dan vakum 0,5 bar pada kapal semirefrigerated.


Gambar 2.4 Tipe Tangki C (Semi-refrigerated)



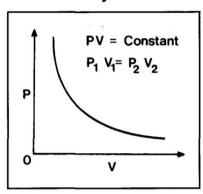
# 2) Tangki Tipe C (fully-pressurised)

Dalam kasus kapal *fully-pressurised* (muatan diangkut pada suhu sekitar), tangki dapat dirancang memiliki tekanan kerja maksimum sekitar 18 bar. Tangki Tipe C, bila dipasang pada *fully-pressurised gas carrier*, menghasilkan pemanfaatan yang relatif buruk dibandingkan volume lambung kapal. Namun, hal ini dapat diperbaiki dengan menggunakan bejana bertekanan berpotongan atau tangki tipe bi-lobe, yang dapat dirancang dengan lancip di ujung depan kapal.

Gambar 2.5 Tipe Tangki C (fully-pressurised)

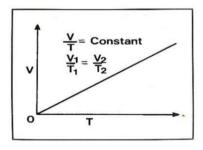


**Sumber: Liquefied Gas Handling Principles: 2016** 


Menurut White dan McGuire (2000:163), selama persiapan muatan, saat tangki didinginkan maka suhu dalam tangki menurun dan uap muatan yang didalamnya akan berubah ke bentuk cair. Ketika muatan uap di dalam tangki berkurang, tekanan di dalam tangki juga akan berkurang. Proses pendinginan tangki harus dilakukan untuk mencegah tekanan berlebih pada tangki akibat proses penguapan yang cepat pada saat pemuatan. Sebelum memuat tangki kargo, harus dilakukan pendinginan pada tangki.

Penurunan suhu ini akan menurunkan tekanan di dalam tangki sehingga penguapan tidak terjadi selama pemuatan. Pada kapal penulis, selain untuk menghindari kenaikan tekanan di dalam tangki muat, *venting cargo* juga harus dihindari yaitu, lepasnya muatan dari tangki ke udara luar melalui *safety relief valve*. Hal ini dapat mengakibatkan berkurangnya muatan serta membahayakan manusia dan lingkungan sekitar. Pada kapal penulis, tekanan tangki minimum ditentukan sebesar 0.04 bar dan tekanan maksimum sebesar 0.36 bar.

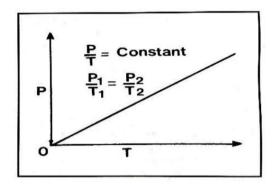
Menurut Liquefied Gas Handling Principles On Ships and In Terminals, Fourth Edition, McGuire and White, (2016), Gas ideal adalah gas yang memiliki sifat sesuai dengan hukum gas, di mana molekul-molekulnya tersebar dan tidak saling berinteraksi. Hukum Boyle menyatakan bahwa "pada suhu yang tetap, volume suatu gas dengan massa tetap akan berbanding terbalik dengan tekanan mutlaknya."


$$PV = Konstan$$
, atau  $P_1V_1 = P_2V_2$ 

Gambar 2.6 Perbandingan tekanan dan volume pada hukum Boyle



Hukum Charles menyatakan bahwa, "pada tekanan konstan, volume suatu gas dengan massa tetap akan berbanding lurus dengan suhu mutlaknya." Dengan kata lain, jika tekanan dijaga konstan, perubahan suhu gas akan menyebabkan perubahan volume gas tersebut secara proporsional.


Gambar 2.7 Perbandingan volume dan temperatur pada hukum Charles



Sumber: Liquefied Gas Handling Principles: 2000

Hukum tekanan (pressure) mengatakan bahwa pada volume an suatu gas yang massanya tetap akan berbanding lurus dengan suhu mutlaknya.

Gambar 2.8 Perbandingan tekanan dan temperatur pada hukum tekanan



Menurut ICS, OCIMF & SIGTTO, (2005:95) bahwa *cargo compressor* harus dicegah dari masuknya muatan *liquid*, karena hal tersebut dapat mengakibatkan kerusakan pada *cargo compressor*. Menurut SIGTTO (2016:181) *cargo compressor* di atas kapal tipe *gas carrier* umumnya digunakan untuk :

- a. Meningkatkan tekanan vapour sehingga berada di atas saturated vapour pressure (SVP) nya dan oleh karena itu, dapat dikondensasi oleh media pendingin dengan reliquefaction.
- b. Memindahkan vapour melalui cargo system.
- c. Meningkatkan tekanan vapour sehingga dapat digunakan dalam system propulsi.

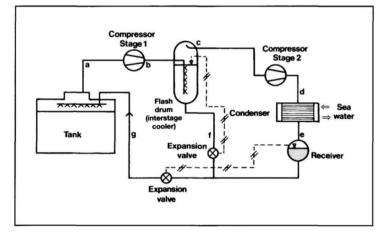
Menurut Fajar (2019:33), Masuknya cairan muatan ke dalam *cargo compressor* harus dihindari, karena hal ini dapat menyebabkan kerusakan yang parah pada kompresor tersebut. Beberapa fungsi utama dari *cargo compressor* adalah sebagai berikut:

a. Menghisap uap muatan yang telah dipisahkan lalu mendorong dan mengirimkannya ke *condensate*.

- b. Dapat membongkar muatan apabila *cargo pump* mengalami kerusakan, maka *cargo compressor* merupakan alternatif untuk membongkar muatan *liquid*.
- c. Menghasilkan hot gas.

Menurut instruction manual book for LPG Reliquefaction plant (1991), Reliquefaction plant adalah sistem yang digunakan untuk menjaga tekanan di dalam tangki muat dengan memastikan nilai tekanan tetap sesuai dengan temperatur tangki untuk menjaga kondisi muatan. Secara umum, komponen-komponen menyusun reliquefaction plant antara lain adalah cargo compressor, knock-out drum, cargo condenser receiver, intercooler, serta alarm dan perangkat keselamatan (safety devices). Semua komponen ini untuk bekeria secara bersama-sama memastikan proses reliquefaksi berjalan dengan baik dan aman, menjaga agar muatan tetap dalam bentuk cair pada kondisi yang diinginkan. Selama proses pemuatan kapal, sistem reliquefaction diaktifkan. Uap yang ada di dalam tangki disedot oleh kompresor sebagai bagian dari sistem reliquefaction dan kemudian dikembalikan ke dalam tangki dalam bentuk cair melalui saluran kondensat. Selanjutnya, cairan muatan keluar dari spray line di dalam tangki secara merata. Selama operasi pemuatan kargo, suhu di dalam tangki harus dijaga mendekati titik didih muatan untuk mencegah agar tetap penguapan yang terlalu cepat, vang bisa menyebabkan peningkatan tekanan di dalam tangki.

Menurut McGuire dan White (2016:87), Kapal yang mengangkut muatan berbahaya, seperti gas dengan tekanan tinggi, harus dilengkapi dengan sistem yang dapat mengontrol tekanan uap di dalam tangki kargo selama proses pemuatan dan pengangkutan. Sistem yang dimaksud adalah reliquefaction plant, yang berfungsi untuk menjaga agar tekanan dan suhu di dalam tangki tetap stabil, memastikan bahwa muatan tetap dalam kondisi


cair dan aman selama perjalanan. Sistem ini sangat penting untuk mencegah terjadinya tekanan yang berlebihan atau kondisi yang bisa membahayakan kapal dan muatan. Adapun beberapa fungsi dari *reliquefaction plants* adalah sebagai berikut:

- a. Mendinginkan tangki muat dan juga pipa muatan sebelum melakukan proses pemuatan.
- b. Mengubah *vapour* ke dalam bentuk butiran cairan dingin yang telah terkondensasi.
- c. Menjaga dan menurunkan suhu dan tekanan muatan pada saat temperatur dan tekanan mengalami kenaikan yang tidak sesuai dengan ketentuannya.
- d. Menghasilkan *hot gas* yang berfungsi mendorong muatan yang tersisa pada jalur muatan kembali ke terminal (*Tank Line Clearing*).

Menurut McGuire and White (2016:29) Panas yang diserap atau dilepaskan oleh suatu zat saat mengalami perubahan dari padat ke cair, cair ke uap, atau sebaliknya, disebut sebagai panas laten. Panas laten yang terlibat dalam proses penguapan dan pengembunan adalah jumlah yang sama. Namun, panas laten yang dihasilkan dari penguapan dapat bervariasi tergantung pada tekanan. Perubahan suatu zat berkaitan dengan jumlah panas yang ditambahkan untuk menaikkan suhu zat tersebut. Uap yang berada di atas cairan tidak bersifat statis, karena molekul-molekul uap akan kembali ke cairan, sementara molekul-molekul cairan lainnya terus menguap dan masuk ke fase uap.

Dalam kaitannya dengan *density* dalam, menurut McGuire and White (2016), bahwa *density* dari suatu cairan dapat diartikan menjadi massa persatuan volume suatu zat pada kondisi suhu dan tekanan tertentu. Kepadatan cairan akan berkurang seiring dengan peningkatan suhu. Sementara itu, kepadatan uap jenuh dari gas cair meningkat seiring dengan kenaikan suhu. Hal ini terjadi karena

berinteraksi dengan cairannya uap vang akan mengalami perubahan, dan saat suhu meningkat, lebih banyak cairan yang berubah menjadi uap, yang menyebabkan tekanan uap meningkat. Penjelasan di atas mengungkapkan hubungan langsung antara suhu dan tekanan muatan dalam tangki, yang berpengaruh dalam penanganan muatan pada kapal gas LPG. Ketika suhu muatan meningkat, tekanan di dalam tangki juga akan meningkat, dan sebaliknya, jika suhu muatan turun, tekanan dalam tangki akan berkurang. Perubahan suhu dan tekanan ini sangat mempengaruhi kelancaran proses pemuatan LPG, karena selama proses pemuatan, tekanan dalam tangki akan terus meningkat seiring dengan bertambahnya jumlah muatan yang masuk. Oleh karena itu, pengelolaan suhu dan tekanan yang tepat sangat penting untuk mencegah terjadinya high pressure yang dapat membahayakan keselamatan operasional kapal dan muatan.



Gambar 2.9 Reliquefaction cycle Two-Stage

**Sumber: Liquefied Gas Handling Principles: 2000** 

Sistem ini digunakan pada kapal jenis *fully-refrigerated*, adapun tahap dari sistem ini adalah rebus-off, diambil dari tangki muatan untuk pemisahan, di mana kondisi ini muatan sangat panas, selanjutnya dilakukan pendinginan pada *intercooler*. Hal ini dilakukan untuk mengurangi tekanan dan temperatur pada tahap

pertama, kondisi ini di mana muatan didinginkan menggunakan kondensor, selanjutnya melewati katup ekspansi yang digunakan sebagai *intercooler*.

## B. Liquefied Petroleum Gas (LPG)

Menurut Syukur, Hasan (2011), Lpg tersusun dari unsur karbon dan hidrogen yang merupakan senyawa hidrokarbon yang komponen utamanya adalah C<sub>3</sub> dan C<sub>4.</sub> Gas yang dihasilkan dari kilang minyak dan gas, gas propana  $(C_3H_8)$ , gas butana  $(C_4H_{10})$ adalah komponen utamanya yang dicairkan. LPG butana umumnya digunakan oleh masyarakat untuk keperluan rumah tangga, seperti bahan bakar memasak, korek api, dan lainnya. Sementara itu, LPG propana lebih sering dimanfaatkan dalam industri-industri, di bahan pendingin, bahan antaranya sebagai bakar untuk pemotongan, penyemprotan cat, dan berbagai keperluan industri lainnya. Kedua jenis LPG ini memiliki aplikasi yang berbeda sesuai dengan sifat fisik dan kebutuhan penggunaannya.

Menurut McGuire and White (2000:8) *Propane* adalah gas hidrokarbon yang termasuk dalam keluarga alkane. Ini adalah senyawa kimia dengan rumus kimia C<sub>3</sub>H<sub>8</sub>, yang berarti setiap molekul propane terdiri dari tiga atom karbon dan delapan atom hydrogen. Propana merupakan bagian dari kelompok hidrokarbon yang dikenal sebagai alkane atau paraffin, dan merupakan salah satu dari banyak gas alam yang digunakan sebagai bahan bakar. Gas ini tidak memiliki bau sehingga dicampur dengan *ethanethiol* yang memiliki bau kuat sehingga dapat dideteksi ketika terjadi kebocoran. Propana relatif mudah untuk dicairkan dan dikompres, dengan titik didih sekitar -42°C. Propana dapat disimpan dalam hampir semua kondisi lingkungan karena suhu di bawah titik beku tidak memengaruhi sifat-sifatnya. Berbeda dengan gas, propana lebih berat dari udara, sekitar 1,5 kali lebih padat dalam bentuk cair, sehingga cenderung terkumpul di bagian bawah. Ketika propana cair

menguap pada tekanan atmosfer, ia akan terlihat putih karena kondensasi uap air yang terjadi akibat perbedaan suhu antara propana yang menguap dan udara sekitarnya.

Menurut McGuire and White (2000:8) Butane adalah gas hidrokarbon yang masuk ke dalam keluarga alkane dan memiliki rumus kimia C<sub>4</sub>H<sub>10</sub>. Butane dapat ditemukan di dalam gas alam atau bisa diproduksi melalui proses penyulingan minyak bumi. Butane biasanya digunakan sebagai bahan bakar diberbagai aplikasi, termasuk dalam penggunaan tabung gas untuk memasak, penggunaan di pemanas ruangan portable, dan sebagai bahan bakar untuk lighter (korek api gas). Meskipun butana biasanya lebih murah daripada propana, penggunaannya kurang mengakibatkan masalah kompatibilitas dengan berbagai alat. Titik didih butana kira-kira pada titik beku 0° C, membuatnya tidak efektif untuk digunakan di lingkungan suhu yang sangat rendah. Ketika suhu turun di bawah titik didihnya, butana tetap dalam keadaan cair, tidak sehingga menciptakan perbedaan tekanan untuk mengeluarkan gas dari wadahnya. Keuntungan penting dari butana adalah efisiensi bahan bakarnya yang luar biasa. Ada beberapa sifat dari produk LPG ini adalah sebagai berikut :

- 1. Tidak memiliki bau, agar menjamin keselamatan, jadi diberi zat odor, agar terjadi kebocoran akan tercium.
- 2. Mudah terbakar: Secara umum, syarat mutu LPG harus dapat menguap dengan sempurna dan terbakar dengan baik pada saat digunakan tanpa menimbulkan korosi saat digunakan.
- 3. Tidak berwarna, perlu menambahkan zat pewarna untuk melihat cairannya.
- 4. Tidak beracun dan sangat sedikit, ketika terjadi kebocoran di udara pada konsentrasi 2 hingga 3% yang berakibat pada kepala pusing dan pingsan. Ketika terjadi kebocoran pada ruangan yang tertutup, dapat menggantikan oksigen pada ruangan tersebut

- dan akan mengakibatkan gangguan pernapasan orang yang berada di dalam ruangan tersebut karena menghirup gas.
- 5. Tidak berasa, produk LPG umumnya tidak memiliki karakteristik rasa tertentu.

## C. Ship to Ship Operation

Menurut Solas Consolidated (2014:354) menyatakan bahwa, "Ship to ship activity means any activity not related to port facility that involves the transfer of goods or person from one ship to antoher". Yang artinya adalah setiap kegiatan kapal yang tidak berkaitan dengan fasilitas pelabuhan yang melibatkan transfer barang atau orang dari suatu kapal ke kapal yang lain.

Menurut Ship to Ship Transfer Guide (2013:xi), Ship to Ship Transfer (STS) adalah proses pemindahan muatan cair atau gas antara dua kapal yang berlabuh berdampingan. Proses ini dapat dilakukan ketika salah satu kapal berada di tempat labuh atau sedang berlabuh di pelabuhan, atau bahkan ketika kedua kapal sedang bergerak di laut. Ship to ship sering digunakan untuk efisiensi logistik, terutama dalam pengangkutan minyak, gas, atau produk lainnya, karena memungkinkan pemindahan muatan tanpa perlu masuk ke pelabuhan atau terminal tertentu. Secara umum, operasi ini mencakup serangkaian tahapan, mulai dari manuver pendekatan kapal, penambatan kapal, pemasangan selang (hose), prosedur pemindahan muatan, pelepasan selang, pembebasan tambatan kapal, hingga manuver keberangkatan kapal.

## D. Kapal LPG/C

Menurut McGuire dan White (2000:9), kapal pengangkut gas didesain khusus untuk mengangkut muatan gas seperti *liquefied natural gas* (LNG) dan *liquefied petroleum gas* (LPG) atau gas petrokimia seperti etilena dan propilena. Kapal ini direkayasa dengan cermat untuk menahan spesifik muatan gas,

menggabungkan mekanisme penyimpanan dan penanganan yang aman, di samping langkah-langkah keamanan canggih yang diterapkan untuk melindungi muatan dari risiko yang terkait dengan mudah terbakar dan beban tekanan tinggi. Pengangkut gas diharuskan untuk mematuhi banyak protokol dan standar keselamatan internasional yang ditetapkan oleh Organisasi Maritim Internasional (IMO), yang mencakup kewajiban teknis, operasional, dan keselamatan.

Kapal pengangkut gas memiliki kapasitas yang bervariasi, mulai dari kapal kecil dengan kapasitas 500 m³ hingga 6.000 m³ untuk mengangkut muatan seperti butana, propana, dan gas kimia, hingga kapal besar dengan kapasitas 100.000 m³ yang digunakan untuk mengangkut LPG. Secara umum, kapal pengangkut LPG dapat digolongkan menjadi tiga jenis berdasarkan karakteristik dan kondisi muatan yang diangkut, yaitu kapal jenis semi-refrigerated, fully-refrigerated, dan pressurized. Masing-masing jenis kapal ini dirancang dengan teknologi dan sistem penanganan muatan yang berbeda, sesuai dengan sifat fisik dan persyaratan keamanan muatan yang dibawa:

## 1. Fully Pressurized Ships

Pembawa gas minyak cair (LPG) bertekanan penuh mewakili kategori paling mudah di antara berbagai klasifikasi pembawa gas. Kapal-kapal ini mengangkut kargo mereka pada suhu sekitar dalam tangki kargo tipe-C yang dibangun dari baja karbon yang kuat, yang direkayasa untuk menahan tekanan tinggi mencapai hingga 17,5 bar. Selain itu, kapal-kapal ini tidak memerlukan *reliquefaction system*, yang memungkinkan kargo dibuang melalui pompa kargo atau kompresor. Selain itu, ketika dilengkapi dengan pemanas kargo, kapal tersebut mampu melaksanakan prosedur pemuatan suhu dingin untuk kapal berpendingin penuh. Kapal bertekanan penuh relatif kompak,

dengan kapasitas muat mulai dari 4.000 m³ hingga 6.000 m³, dan sebagian besar digunakan untuk transportasi LPG dan amonia.

Gambar 2.10 Gas Ambalat (fully-pressurised)

Sumber: vesselfinder.com: 2024

## 2. Semi Pressurised Ships

Kapal tipe semi-pressurised memiliki kesamaan dengan kapal tipe *fully-pressurised* karena keduanya dilengkapi dengan C. tangki kargo tipe Desain kapal semi-pressurised memungkinkan tangki untuk menahan tekanan antara 5 hingga 7 bar. Kapal ini digunakan untuk mengangkut berbagai jenis gas, termasuk LPG, vinil klorida, propilena, dan butadiena. Kapal semi-pressurised menggunakan tangki tipe C dan memiliki kapasitas muatan yang bervariasi antara 3.000 m³ hingga 20.000 m³. Konstruksi tangki pada kapal ini menggunakan baja bersuhu rendah yang mampu menahan suhu hingga -48°C, yang cukup untuk sebagian besar LPG dan gas kimia lainnya. Selain itu, tangki kapal juga bisa dibuat dari aluminium untuk mengangkut etilen pada suhu yang lebih rendah, yaitu -104°C. Selanjutnya, penanganan disesuaikan sistem kapal dapat yang memungkinkan pelaksanaan operasi bongkar muat yang kompatibel dengan kapal fully-pressurised dan fully-refrigerated.

Cas Chem 6

**Gambar 2.11 Kapal Semi Pressurised** 

Sumber: Wikipedia: 2024

# 3. Fully Refrigerated Ships

Kapal tipe *fully refrigerated* ini dirancang untuk mengangkut LPG dan amonia dalam jumlah besar dengan tekanan atmosfer, dilengkapi dengan empat sistem pemuatan kargo yang terdiri dari:

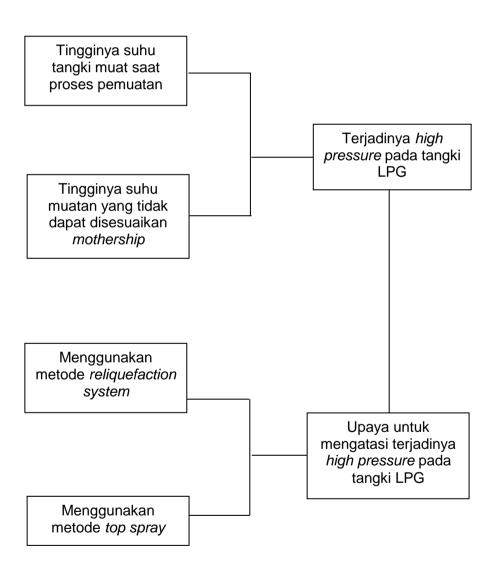
- a. Tangki independen dengan lambung tunggal yang memiliki double bottom dan hopper tank.
- b. Tangki independen dengan lambung ganda
- c. Tangki integral (dengan lambung ganda)
- d. Tangki semi-membran (dengan lambung ganda)

Kapal jenis *fully refrigerated* umumnya dilengkapi dengan tangki tipe A prismatik yang mampu menahan tekanan hingga sekitar 0,7 bar. Tangki ini memungkinkan pengangkutan muatan dengan suhu serendah -48°C. Kapal *fully refrigerated* memiliki kapasitas yang bervariasi, mulai dari 20.000 m³ hingga 100.000 m³, dan biasanya dilengkapi dengan empat hingga enam tangki muatan. Untuk meningkatkan fleksibilitas operasional, kapal ini

biasanya dilengkapi dengan pemanas kargo (cargo heater) serta booster pump, yang memungkinkan pemindahan muatan ke depot LPG dengan tipe *pressurized*.

Gambar 2.12 VLGC Pertamina Gas 1 (fully-refrigerated)




Sumber: cnbcindonesia.com: 2021

# E. Model Berpikir

Kapal LPG/C Gas Widuri adalah Lpg *Carrier* berjenis *fully* refrigerated yang membawa muatan pada temperatur -40°C. Ciriciri muatan yang diangkut adalah muatan yang bersifat dingin yang juga mempengaruhi tekanan tangki kapal. Proses pemuatan juga harus memperhatikan urutan antara butana dan propana, karena hal ini dapat berpengaruh signifikan terhadap tekanan tangki kapal. Pada pelaksanaan operasi kargo, tidak selalu berjalan lancar, sehingga sering terjadi permasalahan selama proses pemuatan. Permasalahan ini dipengaruhi oleh beberapa faktor, seperti perbedaan sifat fisik kedua gas tersebut, perubahan suhu dan tekanan, serta kapasitas dan kondisi tangki kapal yang digunakan. Faktor-faktor ini perlu diperhatikan dengan cermat untuk memastikan keselamatan dan efisiensi selama proses pemuatan.

Mengingat deskripsi yang diuraikan dan tantangan yang dihadapi, adalah layak untuk merancang model berpikir yang komprehensif dan metodis yang mempromosikan pemahaman

tentang faktor-faktor mendasar yang berkontribusi terhadap munculnya tekanan tinggi di dalam tangki selama proses pemuatan, serta intervensi operasional yang diperlukan yang harus dilakukan. Penulis dapat menggambarkan skema konseptual yang relevan dengan wacana skripsi ini dalam diagram berikutnya:



Gambar 2.13 Model berpikir

# F. Pertanyaan Penelitian

Pertanyaan penelitian adalah suatu proposisi atau pernyataan yang diajukan sebagai dasar untuk penyelidikan lebih

lanjut. Ini adalah anggapan awal yang harus diuji melalui observasi, eksperimen, atau penelitian untuk memverifikasinya atau menolaknya. Dalam ilmu pengetahuan pertanyaan penelitian merupakan langkah awal dalam proses pemahaman dan penemuan baru. Yang menjadi pertanyaan dalam penelitian ini yaitu apa yang menjadi penyebab terjadinya *high pressure tank* pada saat pemuatan di kapal LPG/C Gas Widuri.

#### BAB III

#### **METODE PENELITIAN**

#### A. Jenis Penelitian

Penulis menggunakan jenis penelitian deskriptif kualitatif, yaitu metode yang menyajikan informasi dengan cara menganalisis data dan temuan-temuan yang diperoleh di lapangan, kemudian mengaitkannya dengan teori-teori yang relevan terhadap masalah yang ada. Pendekatan ini memungkinkan penulis untuk mengidentifikasi dan memahami penyebab terjadinya masalah tersebut.

Menurut Anslem Strauss (2013;4), penelitian kualitatif adalah penelitian yang hasilnya tidak diperoleh melalui metode statistik atau perhitungan lainnya. Sementara itu, menurut Djam'an (2010;22), penelitian kualitatif menekankan pada kualitas atau sifat suatu produk atau jasa. Penelitian kualitatif didasarkan pada filsafat metode post-positivisme, yang menggunakan kondisi objek yang alami dan menganggap peneliti sebagai alat atau instrumen kecil dalam proses penelitian. Analisis data dalam penelitian kualitatif berfokus pada makna daripada generalisasi, serta menekankan pada kualitas dan hasil dari penelitian itu sendiri.

## B. Waktu dan Tempat penelitian

## 1. Waktu penelitian

Penelitian ini dilaksanakan ketika penulis melaksanakan praktek laut (prala) kurang lebih 8 bulan terhitung dari penulis *sign on* pada tanggal 16 maret 2023 sampai dengan *sign off* pada tanggal 27 oktober 2023 sebagai *deck cadet*.

#### 2. Tempat penelitian

Penelitian ini dilaksanakan atas kapal LPG/C Gas Widuri berjenis gas carrier yang dimiliki oleh perusahaan PT. PERTAMINA INTERNATIONAL SHIPPING yang berkebangsaan Indonesia.

### C. Definisi Konsep

Definisi konsep pada penelitian ini, digunakan secara observasional yang berupa data deskriptif dan objek observasi dengan menjelaskan fakta-fakta yang terjadi pada saat pengamatan serta memberikan solusi terhadap permasalahan tersebut. Berdasarkan beberapa faktor yang diterapkan dalam penelitian ini diantaranya:

#### 1. Tekanan

Besaran gaya yang bekerja per satuan luas disebut dengan tekanan. Tekanan dapat disebabkan oleh adanya gaya tegak lurus terhadap suatu benda.

## 2. Tangki kapal

Tangki merupakan tempat atau *storage* untuk menyimpan suatu produk atau muatan yang dimuat di atas kapal untuk menjaga produk atau muatan tersebut dan juga tempat untuk menyimpan bahan bakar.

## 3. Liquefied Petroleum Gas

Liquefied Petroleum Gas (LPG) adalah senyawa gas hidrokarbon yang disimpan dalam bentuk cair melalui proses pencairan. Komponen utama dari LPG adalah propana (C3H8) dan butana (C4H10), yang keduanya merupakan gas yang dapat dicairkan pada tekanan dan suhu tertentu. LPG sering digunakan sebagai bahan bakar untuk memasak, pemanas, serta aplikasi industri lainnya.

#### 4. Ship to Ship Operation

Ship to ship adalah suatu kegiatan dikapal yang memindahkan suatu muatan dari kapal satu ke kapal yang satunya yang mana kapal tersebut diposisikan berdekatan bersama-sama.

#### D. Unit Analisis

Berdasarkan penelitian tersebut, unit analisis yang digunakan adalah terjadinya tekanan tinggi (high pressure) pada tangki LPG di kapal saat pemuatan. Adapun subjek dalam penelitian ini, yang akan menjadi responden dalam wawancara, meliputi Chief Officer, Gas

Engineer, Third Officer, Fourth Officer, dan Chief Engineer. Tujuan dari wawancara tersebut adalah untuk mengetahui penyebab terjadinya tekanan tinggi pada tangki LPG selama proses pemuatan.

## E. Teknik Pengumpulan Data

Teknik dan Prosedur Pengumpulan Data yang digunakan dalam penelitian ini ada 3, yaitu:

#### a. Metode Observasi

Penelitian yang dilakukan dengan cara peninjauan langsung ke lapangan pada objek yang diteliti pada saat pelaksanaan dinas jaga.

# b. Metode Penelitian Pustaka (Library Research)

Metode ini mengumpulkan data yang digunakan sebagai dasar perbandingan antara data yang diperoleh melalui observasi dengan informasi yang terdapat dalam buku-buku yang relevan dengan topic penelitian ini, serta data tertulis lainnya yang ada di kapal yang berkaitan dengan pokok bahasan penelitian. Dengan demikian, data yang terkumpul dapat memberikan pemahaman yang lebih komprehensif tentang masalah yang sedang diteliti.

## c. Metode Wawancara (*Interview*)

Penulis melakukan wawancara langsung dengan Chief Officer, Gas Engineer, Third Officer, Fourth Officer dan Chief Engineer dengan tujuan agar memperoleh data dan informasi yang diperlukan dalam penelitian ini.

## F. Prosedur Pengolahan dan Analisis Data

Penelitian ini mengharuskan penulis untuk menganalisis data yang berupa kata-kata, kalimat hasil wawancara, catatan lapangan, dokumen pendukung penelitian, serta tulisan yang memuat uraian dari studi literatur dan observasi. Setelah seluruh data diperoleh melalui wawancara dan observasi, penulis akan merangkum dan memilih

informasi yang relevan dan penting dari hasil tersebut. Proses ini dilakukan dengan cara mengkaji dan mempersempit data agar fokus pada temuan utama yang mendukung tujuan penelitian.

Langkah selanjutnya adalah membuat presentasi data. Penyajian data merupakan proses menyusun dan menyajikan informasi yang diperoleh dari penelitian secara sistematis, sehingga data tersebut mudah dilihat, dibaca, dipahami, dan dapat ditarik kesimpulan. Tujuan dari penyajian data ini adalah untuk mempermudah pemahaman pembaca terhadap hasil penelitian, serta memberikan gambaran yang jelas mengenai temuan-temuan yang relevan.

Setelah segala sesuatunya dianggap selesai, dapat diambil kesimpulan dari analisis dan pembahasan yang telah dilakukan, memberikan saran berdasarkan kesimpulan tersebut, yang kemudian dapat menjadi bahan pertimbangan dalam prosedur dinas jaga, dan langkah-langkah tersebut dianggap telah rampung.