ANALISIS MENINGKATNYA TEMPERATUR AIR PENDINGIN MESIN UTAMA PADA KAPAL MV. SULAWESI LEADER

Disusun sebagai salah satu syarat untuk menyelesaikan Program Pendidikan dan Pelatihan Pelaut (DP) Tingkat I

SEMIDARLIANTO P.M NIS. 24.11.102.028 AHLI TEKNIKA TINGKAT I

PROGRAM DIKLAT PELAUT TINGKAT I POLITEKNIK ILMU PELAYARAN MAKASSAR TAHUN 2024

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : SEMIDARLIANTO P.M

Nomor Induk Perwira Siswa : 24.11.102.028

Jurusan : Ahli Teknika Tingkat I

Menyatakan bahwa KIT yang saya tulis dengan judul:

ANALISIS MENINGKATNYA TEMPERATUR AIR PENDINGIN MESIN UTAMA PADA KAPAL MV. SULAWESI LEADER

Merupakan karya asli. Seluruh ide yang ada dalam KIT tersebut, kecuali tema dan yang saya nyatakan sebagai kutipan, merupakan ide saya sendiri.

Jika pernyataan di atas terbukti tidak benar, maka saya bersedia menerima sanksi yang ditetapkan oleh Politeknik Ilmu Pelayaran Makassar.

Makassar, 06 DESEMBER 2024

SEMIDARLIANTO P.M

ANALISIS MENINGKATNYA TEMPERATUR AIR PENDINGIN MESIN UTAMA PADA KAPAL MV SULAWESI LEADER

Disusun dan Diajukan oleh:

SEMIDARLIANTO P M

NIS. 24.11.102,028 Ahli Teknika Tingkat I

Telah dipertahankan di depan Panitia Ujian KIT Pada tanggal 22 JANUARI 2025

Menyetujui,

Penguji II

JOPIE PESULIMA, S.T., M.Mar.E

NIP. -

DARWIS, S.T., M.T., M.Mar.E.

NIP. 197307312023211002

Mengetahui:

a.n. Direktur Politeknik Ilmu Pelayaran Makassar Pembantu Direktur I

Capt. FAISAL SARANSI, M.T.

PERSETUJUAN SEMINAR KARYA ILMIAH TERAPAN

Judul

: ANALISIS MENINGKATNYA TEMPERATUR AIR

PENDINGIN MESIN UTAMA KAPAL MV. SULAWESI

LEADER

Nama Pasis

: SEMIDARLIANTO P.M

NIS

: 24.11.102.028

Program Diklat : Ahli Teknika Tingkat I

Dengan ini dinyatakan telah memenuhi syarat untuk di seminarkan

Makassar, 22 Januari 2025

Menyetujui,

Pembimbing I

Pembimbing IJ

FANDI, S.T., M.Mar.E.

NIP, 19831202 201012 1 005

Mengetahui:

MANAGER DIKLAT TEKNIS, PENINGKATAN DAN PENJENJANGAN

> Ir. SUYUTI, M.Si., M.Mar, E. NIP. 19680508 200212 1 002

KATA PENGANTAR

Puji dan syukur kehadirat Tuhan yang Maha Esa atas Rahmat dan karuniaNya, sehingga penulis dapat menyelesaikan karya tulis ilmiah terapan ini dengan judul "Analisis Meningkatnya Temperatur Air Pendingin Mesin Utama Pada Kapal MV. SULAWESI LEADER" walau dalam keterbatasan waktu dan berbagai kendala yang ada .Penyusun karya tulis ilmiah terapan merupakan persyaratan untuk memenuhi kewajiban dalam menyelesaikan kurikulum Diklat Teknik Profesi Kepelautan Program Studi Mesin Tingkat I, guna pencapaian kompetensi keahlian pelaut sebagai pemegang Sertifikat Ahli Tehnika Tingkat I (ATT – I) di Politeknik Ilmu Pelayaran (PIP) Makassar.

Dalam penyusunan karya ilmiah terapan ini penulis merasa jauh dari sempurna seperti terbatasnya pengetahuan teori mengenai hal-hal yang terkait dengan ilmu tata bahasa Indonesia yang benar sehingga mudah dipahami bagi para pembaca, baik sistematika penulisan maupun isi materinya, kritik dan saran saya harapkan demi kesempurnaan karya ilmiah terapan ini.

Atas bantuan, saran dan bimbingan yang telah diberikan, penulis mengucapkan terima kasih sebesar-besarnya kepada :

- Capt. Rudy Susanto, M.Pd. selaku direktur pelaksana Politeknik Ilmu Pelayaran (PIP) Makassar.
- Bapak Ir. Suyuti, M.Si., M.Mar.E. selaku Manager Diklat Teknis,
 Peningkatan dan Penjenjangan Politeknik Ilmu Pelayaran (PIP) Makassar.
- 3. Bapak Yulianto, S.T., M.Mar.E. selaku pembimbing I yang dengan kesabaran, ketelitian memberi bimbingan dalam penyusan karya ilmiah terapan ini.

ix

4. Bapak Fandi, S.T., M.Mar.E. selaku pembimbing II yang dengan

kesabaran, ketelitian memberi bimbingan dalam penyusunan karya ilmiah

terapan ini.

5. Seluruh dosen dan staff Politeknik Ilmu Pelayaran (PIP) Makassar.

6. Orang tua, dan Keluarga yang tidak henti-hentinya dengan penuh

cinta kasih dan sayang memberi dukungan, motivasi dan doanya.

7. Rekan-rekan pasis peserta pasis peserta Diklat ATT Angkatan XLII/2024.

8. Pihak-pihak lain yang tidak bisa penulisan sebutkan satu persatu.

Penulis menyadari masih sangat banyak kekurangan dan keterbatasan dalam

karya tulis ilmiah ini, oleh karena itu kritik dan saran untuk kesempurnaan

penulisan karya tulis ilmiah terapan ini sangat diharapkan.

Akhir kata semoga karya tulis ini dapat memberi manfaat bagi penulis

pribadi, dunia pelayaran dan para pembaca yang seprofesi,

Makas sar, 06 DESEMBER 2024

SEMIDARLIANTO P.M

ABSTRAK

SEMIDARLIANTO P.M 2024, ANALISIS MENINGKATNYA TEMPERATUR AIR PENDINGIN MESIN UTAMA PADA KAPAL MV SULAWESI LEADER. Dibimbing oleh Bapak Yulianto, S.T., M.Mar.E. dan Bapak Fandi, S.T., M.Mar.E.

Tujuan penulisan Karya Ilmiah Terapan ini adalah untuk memahami faktor-faktor teknis yang menyebabkan meningkatnya temperature air pendingin pada mesin utama kapal MV. SULAWESI LEADER. Penelitian ini bertujuan untuk mengidentifikasi risiko kerusakan komponen mesin akibat meningkatnya temperature air pendingin serta menganalisis dampaknya terhadap operasi kapal, yang dapat menyebabkan gangguan signifikan dalam kinerja mesin dan keselamatan pelayaran. Selain itu, penelitian ini juga bertujuan untuk memberikan panduan teknis bagi operator dan teknisi kapal dalam menangani masalah meningkatnya temperature air pendingin, dengan memberikan langkah-langkah penanganan yang tepat dan preventif. Panduan ini diharapkan dapat meningkatkan pemahaman teknis para kru kapal dalam mengelola dan memelihara sistem mesin secara optimal, sehingga dapat mencegah terjadinya gangguan operasi yang lebih serius.

Adapun lokasi kejadian dalam karya tulis ilmiah ini adalah di atas kapal MV. SULAWESI LEADER pada tanggal 25 FEBRUARY 2024, saat pelayaran dari Jakarta menuju Banjarmasin Di atas kapal tersebut penulis menggunakan main engine AKASAKA-MITSUBISHI 5UEC45LA. Pengambilan data dilakukan Penulis dengan cara observasi langsung terhadap main engine yang digunakan di kapal. Ini melibatkan pemeriksaan visual terhadap system pendingin main engine

Berdasarkan kejadian yang dialami MT. SULAWESI LEADER terkait dengan terjadinya suhu tinggi pada mesin utama, dapat disimpulkan bahwa pentingnya pemeliharaan rutin dan pemeriksaan terhadap sistem pendinginan mesin kapal tidak dapat diabaikan. Pembersihan secara teratur terhadap sea chest dan komponen terkait lainnya sangat diperlukan untuk mencegah penumpukan kotoran yang menghambat aliran air laut, yang dapat menyebabkan meningkatnya temperature air pendingin pada mesin utama. Pemantauan suhu mesin dan sistem pendinginan secara terus-menerus juga sangat krusial, karena memungkinkan deteksi dini terhadap masalah teknis sehingga awak kapal dapat merespons dengan cepat dan efektif untuk mencegah kerusakan lebih lanjut, memastikan kelancaran operasi kapal. Kejadian ini juga memberikan pelajaran penting mengenai manajemen risiko dan keamanan operasional dalam pelayaran jarak jauh, di mana implementasi prosedur yang ketat dan pemantauan kondisi kapal secara berkelanjutan dapat mengurangi risiko kegagalan teknis yang dapat mengancam keselamatan kapal, kru, dan kargo. Dengan mengambil kesimpulan ini, MV. SULAWESI LEADER dapat mempertimbangkan langkah-langkah perbaikan dan peningkatan dalam manajemen operasionalnya, guna meminimalkan risiko serupa di masa depan serta menjaga keandalan dan efisiensi operasional kapal.

ABSTRACT

Semidarlianto P.M 2024, Analysis of Increasing Temperature Water Cooling Main Engine on MV. SULAWESI LEADER. Supervised by Yulianto, S.T., M.Mar.E. and Fandi, S.T., M.Mar.E.

The objective of this Applied Scientific Writing is to understand the technical factors that cause increasing temperature water cooling in the main engine of the MV. SULAWESI LEADER. This research aims to identify the risks of component damage in the engine due increasing temperature water cooling and to analyze its impact on the ship's operations, which can cause significant disruptions to engine performance and navigational safety. Additionally, this study aims to provide technical guidance for ship operators and technicians in handling rising temperature water cooling issues in the main engine, offering appropriate and preventive handling measures. This guidance is expected to enhance the technical understanding of the ship's crew in managing and maintaining the engine system optimally, thus preventing more severe operational disruptions.

The incident location in this scientific paper is onboard the MV. SULAWESI LEADER on February 25, 2024, during its voyage from Jakarta to Banjarmasin. On this vessel, the author used AKASAKA-MITSUBISHI 5UEC45LA main engine. Data collection was conducted by direct observation of the main engine used on the ship, involving visual inspections of the main engine's cooling system.

Based on the incident experienced by MT. SULAWESI LEADER related to high temperatures in the main engine, it can be concluded that the importance of routine maintenance and inspection of the ship's cooling system cannot be overlooked. Regular cleaning of the sea chest and other related components is necessary to prevent dirt buildup that obstructs seawater flow, potentially leading increasing temperature cooling to engine. Continuous monitoring of engine temperature and the cooling system is also crucial, as it allows for early detection of technical problems, enabling the crew to respond quickly and effectively to prevent further damage and ensure smooth ship operations. This incident also provides valuable lessons on risk management and operational safety in longdistance voyages, where the implementation of strict procedures and continuous monitoring of the ship's condition can reduce the risk of technical failures that could threaten the safety of the vessel, crew, and cargo. By drawing these conclusions, MV. SULAWESI LEADER can consider corrective measures and improvements in its operational management to minimize similar risks in the future and maintain the ship's operational reliability and efficiency.

DAFTAR ISI

SAMPUL	i
PERNYATAAN KEASLIAN	ii
PERSETUJUAN SEMINAR	iii
HALAMAN PEGESAHAN	iv
KATA PENGANTAR	V
ABSTRAK	vii
ABSTRACT	viii
DAFTAR ISI	ix
BAB I PENDAHULUAN	
A. Latar Belakang	1
B. Rumusan Masalah	3
C. Batasan Masalah	3
D. Tujuan Penelitian	3
E. Manfaat Penelitian	4
F. Hipotesis	4
BAB II KAJIAN PUSTAKA	
A. Tinjauan Pustaka	6
B. Teori Sistem Pendingin	9
C. Syarat Air Pendingin yang Baik	11
D. Prinsip Kerja Sistem Pendingin	12
E. Macam-Macam Sistem Pendingin Diatas Kapal	12
BAB III ANALISIS DAN PEMBAHASAN	
A. Lokasi kejadian	22
B. Situasi dan kondisi	22
C. Temuan	22

D. Analisa		30
E. Pembahasan Ma	salah	31
BAB IV KESIMPULA	N DAN SARAN	
A. Kesimpulan		37
B. Saran		37
DAFTAR PUSTAKA		38
LAMPIRAN		39
RIWAYAT HIDUP		43

BABI

PENDAHULUAN

A. Latar Belakang

Kapal MV. SULAWESI LEADER merupakan salah satu kapal penting dalam armada pelayaran yang memiliki peranan signifikan dalam pengangkutan kendaraan antar pelabuhan. Namun, dalam beberapa waktu terakhir, performa mesin utama (main engine) kapal ini mengalami penurunan yang signifikan. Salah satu indikasi utama dari penurunan performa ini adalah terjadinya peningkatan temperature air pendingin mesin utama yang melebihi batas operasi normal. Kondisi ini tidak hanya mengganggu operasi kapal tetapi juga berpotensi menyebabkan kerusakan serius pada mesin jika tidak segera diatasi.

Meningkatnya temperature air pendingin pada mesin utama tidak hanya berdampak pada performa kapal secara keseluruhan tetapi juga berisiko menyebabkan kerusakan yang lebih serius. Komponen-komponen mesin yang bekerja pada suhu tinggi cenderung mengalami keausan lebih cepat dan bahkan dapat rusak secara permanen. Oleh karena itu, penting untuk mengidentifikasi dan mengatasi masalah ini secepat mungkin untuk menghindari biaya perbaikan yang tinggi serta downtime yang berkelanjutan.

Dalam upaya untuk mengatasi dan mencegah masalah peningkatan temperature air pendingin pada mesin utama di kapal MV. SULAWESI LEADER, diperlukan pendekatan yang komprehensif dan berkelanjutan. Hal ini melibatkan pemeriksaan rutin dan pemeliharaan preventif terhadap semua komponen yang berpotensi menyebabkan masalah. Dengan demikian,

performa kapal dapat kembali optimal dan risiko kerusakan serius pada mesin utama dapat diminimalisir.

Berdasarkan latar belakang di atas, maka penulis tertarik untuk menyusun karya tulis ilmiah dengan judul "Analisis Meningkatnya Temperatur Air Pendingin Mesin Utama Pada Kapal MV. SULAWESI LEADER"

B. Rumusan Masalah

Berdasarkan latar belakang di atas, maka penulis merumuskan masalahan sebagai berikut: "Apa yang menyebabkan meningkatnya temperature air pendingin pada mesin utama di atas kapal?"

C. Batasan Masalah

Apa yang menyebabkan meningkatnya temperature air pendingin mesin utama di kapal MV SULAWESI LEADER?

D. Tujuan Penelitian

Berdasarkan latar belakang, rumusan masalah, batasan masalah maka tujuan penelitian penulis sebagian berikut

- Untuk mengetahui fakor penyebab meningkatnyatemperatur air pendingin mesin utama di kapal MV SULAWESI LEADER
- Untuk mengetahui dampak yang ditimbulkan bila temperature pendingin mesin meningkat

E. Manfaat Penelitian

1. Manfaat secara teoritis adalah:

Sebagai bahan referensi bagi peneliti yang ingin mengkaji adanya gangguan sistem air pendingin pada mesin induk.

2. Manfaat secara praktis adalah:

Untuk memberikan gambaran pada pembaca / masinis jaga yang ingin mengkaji adanya gangguan sistem air pendingin pada mesin induk.

F. Hipotesis

Berdasarkan rumusan masalah yang telah diuraikan di atas maka penulis Mengambil kesimpulan atau dugaan sementara yaiu :

- 1. Tersumbatnya pipa kapiler pada fresh water cooler.
- 2. Kotornya saringan sea chest.

BAB II

KAJIAN PUSTAKA

A. Tinjauan Pustaka

Menurut Henry & Triyono (1975:75). Perawatan dan Perbaikan Motor Diesel Penggerak Kapal:Departemen Pendidikan dan Kebudayaan, Jakarta 1998 manfaatnya untuk menetralkan dan Sistem pendinginan sangat besar mengontrol temperatur motor. Sebagian panas yang berasal dari gas harus dipindahkan secara langsung ke fluida pendinginan, pembakaran sedangkan pada bagian bawah silinder pemindahan panas ke fluida pendinginan terjadi secara tidak langsung. Jika pendinginan tidak dapat berfungsi dengan baik, temperatur setiap bagian silinder akan naik. Keadaan ini akan mengakibatkan terjadinya kemasukan dinding ruang bakar, kemacetan cincin torak atau menguap dan terbakanya minyak pelumas. Oleh karena itu, harus didinginkan dengan baik meskipun pendinginan merupakan motor keperluan untuk menjamin kelangsungan kerja mesin.

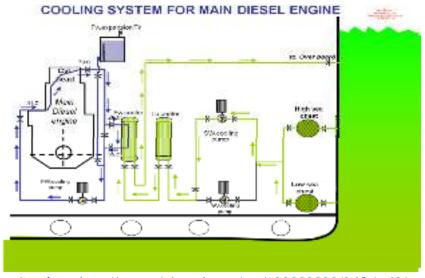
Menurut P.Van Maanen (1983).Marine Motor Diesel Kapal, Jilid II,PT.Triakso Madra, Jakarta. Pada saat pembakaran sebuah motor diesel akan mencapai suhu 1800°K (1527°C) atau lebih pada waktu pembakaran atau lebih. Selama awal pembuang gas-gas, setelah terjadi ekspansi dalam silinder, suhu gas pembakaran masih akan mencapai suhu 1000°K (727°C). Dinding ruang pembakaran (tutup silinder, bagian atas torak, bagian atas lapisan silinder), katup buang dan disekitarya, termasuk dan antara pintu buang akan menjadi sangat panas karena gas tersebut.

Untuk mencegah pengurangan besar dari kekuatan material dan perubahan bentuk secara termis dari bagian motor, maka bagian-bagian tersebut harus didinginkan khususnya mengenai lapisan silinder. Berlaku pula bahwa lapisan pelumas harus tetap dijaga kondisinya yang berarti memerlukan pendingin pula.

Bagian motor berikut, dalam rangka pembakaran harus mendapatkan pendinginan:

- 1. Bagian dari lapisan silinder.
- 2. Tutup silinder.
- 3. Bagian atas torak.
- 4. Rumah katup buang dan sejenis, termasukjuga katup buang.
- 5. Bagian dati katup bahan bakar disekeliling pengabut.
- 6. Rumah turbin gas buang.

Gambar 2.1 : bagian- bagian mesin yang perlu didinginkan



Sumber: Sumber: http://.maritimeworld.web.id

Sebagai akibat dari gesekan panas yang terjadi, jalan hantar dari motor kepala silang juga didinginkan pada motor dengan pengisian tekan

suhu bilas dan suhu pembakaran udara akan meningkat akibat kompresi, didinginkan untuk mendapatkan kepekatan udara yang sebesar-besarnya (pengisian tekan sangat tergantung pula), dan untuk menurukan suhu gas pada waktu pembakaran dan pembuangan ke turbin gas buang.

Sistem pendingin bertujuan untuk menjaga agar temperatur mesin tetap berada pada batas yang diperbolehkan sesuai dengan kekuatan material, karena kekuatan material akan menurun sejalan dengan naiknya temperatur. Pada mesin induk, air pendingin dialirkan melalui dan menyelubungi dinding silinder, kepala silinder serta bagian-bagian lainnya yang perlu didinginkan. Air pendingin akan menyerap kalor dari semua bagian tersebut kemudian mengalir meninggalkan blok mesin menuju alat pendingin yang menurunkan kembali temperatumya seperti fresh water cooler

Gambar 2.2: cooling system for main diesel engine

Sumber: http://www.4shared.com/get/139883838/3dfa1a68/

Melihat gambaran diatas dimana jalur pendingin air tawar (garis berwama biru) di sirkulasikan masuk kemesin induk, air pendingin yang masuk kedalam mesin yaitu 55"C dan yang keluar dari mesin yaitu 70"C, setelah air pendingin

melewati mesin induk kemudian masuk kedalam fresh water cooler untuk didinginkan oleh media air laut dimana kita bisa melihat dari garis berwama hijau air laut dialirkan dari sea chest yang dihisap oleh pompa ditekan masuk ke L.O cooler dan fresh water cooler dan di buang kembali melalui over board.

B. Teori Sistem Pendingin

Lamarque (99:134) Menurut P V Sistem pendingin adalah suatu system yang berfungsi untuk menjaga supaya tempratur mesin dalam kondisi yang ideal. Mesin yang dipasang pada kapal dirancang untuk bekerja dengan efisien maksimal dan berjalan selama berjam-jam berjalan lamanya. Hilangnya energy paling sering dan maksimum dari mesin adalah dalam bentuk energi panas, untuk menghilangkan energi panas yang berlebihan hams menggunakan media pendingin (Cooler) untuk menghindari gangguan fungsional mesin atau kerusakan pada mesin. Untuk itu, sistem air pendingin dipasang pada kapal. Sebelum membahas lebih lanjut, terlebih dahulu perlu diketahui pengertian pendingin. Agar body motor diesel terpelihara dari panas, maka panas yang timbul harus dapat dikendalikan. Keadaan tersebut hanya bisa diatasi dengan cara mengedarkan (Mensirkulasi) media pendingin dengan tekanan yang konstan keseluruh komponen motor induk seperti cylinder jacket cooling, cylinder head. Sistem ini hams menjadi pengawasan bagi para crew mesin agar aliran pendingin selalu lancar.

Sistem pendinginan dalam mesin adalah suatu sistem yang berfungsi untuk menjaga supaya temperatur mesin dalam kondisi yang ideal. Mesin pembakaran dalam (maupun luar) melakukan proses pembakaran untuk menghasilkan energi dan dengan mekanisme mesin diubah menjadi tenaga gerak. Mesin bukan

instrumen dengan efisiensi sempuma, panas hasil pembakaran tidak semua terkonversi menjadi energi,sebagian terbuang melalui saluran pembuangan dan sebagian terserap oleh material disekitar ruang bakar. Mesin dengan efisiensi tinggi memiliki kemampuan untuk konversi panas hasil pembakaran menjadi energi yang diubah gerakan mekanis, dengan hanya sebagian kecil panas yang terbuang.

Mesin selalu dikembangkan untuk mencapai efisiensi tertinggi, tetapi juga mempertimbangkan faktor ekonomis, daya tahan, keselamatan serta ramah lingkungan. Air pendingin dalam fungsinya sangat vital dalam menjaga kelancaran pengoperasian motor induk (P.Van Maanen, 2002, Motor Diesel Kapal, hal 8.1, Noutech).

Proses pembakaran yang berlangsung terus menerus dalam mesin mengakibatkan mesin dalam kondisi temperatur yang sangat tinggi. Temperatur sangat tinggi akan mengakibatkan desain mesin menjadi tidak ekonomis, sebagian besar mesin juga berada dilingkungan yang tidak terlalu jauh dengan manusia sehingga menurunkan faktor keamanan. Temperatur yang sangat rendah juga tidak terlalu menguntungkan dalam proses kerja mesin. Sistem pendingin digunakan agar temperatur mesin terjaga pada batas temperatur kerja yang ideal. Didalam sistem pendingin terdapat beberapa komponen yang berkerja secara berhubungan antara lain cooler, pompa sirkulasi air tawar, pompa air laut, strainer pada air laut, sea chest dan tangki expansif. Dari keempat komponen inilah yang sering menyebabkan kurang maksimalnya hasil pendinginan terhadap Motor Induk. Pendinginan motor induk dimaksudkan untuk menjaga kestabilan suhu pada bagian motor,

sehingga tidak terjadi kenaikan suhu yang terlalu tinggi sebagai akibat dari pembakaran bahan bakar didalam silinder dan gesekan yang terjadi. Pendingian motor juga dimaksudkan utnuk mengurangi resiko terjadinya kerusakan.

C. Syarat Air Pendingin yang Baik

1. Bersih

Artinya bersih dari kotoran yang dapat menyumbat mesm pendingin sehingga menghambat pemidahan panas dari bagian-bagian atau komponen• komponen mesin pada mesin pendingin.

2. Keasaman Air (pH)

Keasaman air (pH) penting dalam sistem pendingin. Keasaman air pendingin (pH) kurang lebih 7. Bila pH air pendingin kurang dari 7 maka bersifat asam, ini sangat berpengaruh pada mesin dan akan membuat bagian mesin mudah terjadi korosi. Bila pH air pendingin lebih dari 7 maka akan bersifat basah, ini akan mempengaruhi air pendingin dan menyebabkan kurang baiknya penyerapan panas oleh air pendingin.

3. Tidak Mengandung Mineral

Air pendingin yang mengandung mineral mudah membentuk kotoran-kotoran/partikel dalam air yang selanjutnya akan menempel pada dinding saluran air (instalasi), dan akan menghambat pemindahan panas dari bagian mesin ke air pendingin. Maka air pendingin mesin yang baik tidak mengandung mineral.

4. Dapat Menyerap Dengan Baik

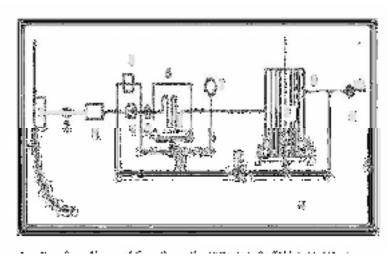
Pendingin air mempunyai sifat pendingin yang baik karena mempunyai daya serap panas yang banyak, mudah dialirkan dan pendingin merata.

D. Prinsip Kerja Sistem Pendingin

Menurut P V Lamarque (99:134), Sistem pendingin adalah adalah suatu sistem yang berfungsi untuk menjaga supaya temperatur mesin dalam kondisi yang ideal. Mesin pembakaran dalam (maupun luar) melakukan proses pembakaran untuk menghasilkan energi dan dengan mekanisme mesin diubah menjadi tenaga gerak

Prinsip pendinginan adalah melepaskan panas mesin melalui air sebagai media pendingin untuk menyerap panas, komponen-komponen sistem tersebut mulai dari air laut dihisap dari sea chest menggunakan pompa air laut dan sebelum melewati pompa terlebih dahulu hams melewati strainer (filter) kemudian menuju cooler untuk menyerap panas dan membuang kembali ke laut, Air laut langsung digunakan dalam sistem mesin sebagai media pendingin untuk penyerapan panas. Pendingin air laut nya hanya lewat untuk menyerap panas dan akan terbuang kembali ke laut.

E. Macam-macam Sistem Pendingin di Kapal


Menurut Lars Larsson and Hoyte C.Raven (2018). Marine Engineering System: Design, Operation and Maintenance, Adapun Sistem pendingin yang pada umumnya di gunakan di atas kapal untuk mendinginkan mesin induk dan mesin bantu terbagi menjadi tiga (3) bagian sistem pendingin:

1. Sistem Pendingin Terbuka

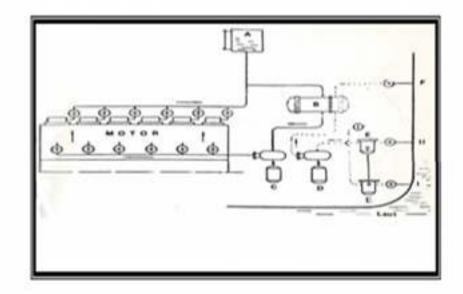
Sistem pendingin terbuka (direct cooling system) adalah sistem pendingin motor bakar pada kapal dimana air laut dipakai langsung untuk mendinginkan silinder motor bakar dan komponen lainnya setelah itu dibuang kembali ke laut, sistem media terbuka ini mempunyi dampak

negatif terhadap material yang bersentuhan langsung dengan air laut, akan mudah berkarat, kotor, penyempitan saluran pipa-pipa yang dapat mempengaruhi pendinginan pada mesin induk. Air laut langsung digunakan dalam sistem mesin sebagai media pendingin untuk penyerapan panas.

Gambar 2.3 Sistem Pendingin Terbuka

 $Sumber: http://www.4shared.com/get/139883838/3dfala68/Heat_$

Transfer JP Holman.html


Keterangan:

- 1. Saringan Laut (Sea Chest)
- 2. Katup / Value
- 3. Saringan
- 4. Pompa
- 5. Katup Pengaman
- 6. Tangki Pendingin
- 7. Termometer
- 8. Mesin Induk
- 9. Pipa buang

Melihat dari sistem diatas dimana air laut yang masuk melalui saluran sea chest (1) di tekan menggunakan pompa (4) masuk kedalam mesin induk (8) untuk mendinginkan bagian-bagian cylinder mesin dan setelah air laut mendinginkan mesin langsung keluar melalui pipa buang atau over board (9).

2. Sistem Pendingin Tertutup

Sistem pendingin tertutup menggunakan dua media pendingin yang di gunakan yaitu air tawar dan air laut. Air tawar di gunakan untuk mendinginkan bagian bagian motor sedangkan air laut digunakan untuk mendinginkan air tawar, selanjutnya air laut dibuang langsung keluar kapal. Proses pendinginan tertutup adalah air tawar di dinginkan di fresh water cooler dengan air laut, kemudian air tawar yang sudah di dinginkan diisap oleh fresh water cooler untuk mendinginkan mesin induk. Kemudian air tawar sebagian masuk ke tangki expansi, masuk ke fresh water cooler untuk di dinginkan kembali, sehingga dapat disirkulasikan terus menerus untuk mendinginkan mesin induk. Apabila air tawar berkurang karena adanya kebocoran maka air tawar diisi oleh expansi fresh water tank. Air tawar yang masuk ke mesin induk suhunya di atur three way valve dan temperature indicator control sehingga a1r tawar masuk untuk mendinginkan mesin induk sesuai kebutuhan pendingin.

Gambar 2.4 Sistem Pendingin Tertutup

Sumber: http://www.4shared.com/get/139883838/3dfala68

Keterangan:

- A) Bak persediaan air tawar
- B) Bejana pendingin
- C) Pompa untuk air tawar
- D) Pompa untuk air laut
- E) Saringan saringan
- F) Saluran buang air untuk laut
- G) Saluran pemasuk untuk permukaan air yang rendah
- H) Saluran pemasuk untuk permukaan air yang tinggi / keruh

3. Central Cooling System

Sistem pendingin utama pada kapal dibagi menjadi dua jenis, yaitu sistem pendingin air tawar (fresh water cooling system) dan sistem pendingin air laut (sea water cooling system). Pada sistem pendingin air tawar, air yang digunakan sebagai pendingin diambil dari laut dan diproses

melalui proses desalinasi untuk menghilangkan garam-garam yang terkandung di dalamnya. Sedangkan pada sistem pendingin air laut, air langsung diambil dari laut tanpa melalui proses desalinasi.

Temp socsor
and transmitter
Temp sensor
and transmitter
Temp sensor
and transmitter
Touris

To

Gambar. 2.5 Central Cooling System

Sumber: https://www.marineinsight.com/guidelines

Central Cooling Water System adalah bagian dari sistem pendingin air laut dan berfungsi sebagai pusat pengatur suhu pada mesin dan peralatan kapal. Sistem ini terdiri dari beberapa komponen utama, antara lain:

a. Intake sea chest dan filter sea chest

Intake sea chest berfungsi sebagai tempat masuknya air laut ke dalam sistem pendingin. Sea chest pada umumnya diatas kapal ada dua buah yaitu dibawah lambung kapal dibawah garis air dan disamping dibawah garis air mengingat bervariasinya kedalaman perairan yang dilewati serta sea chest ini dilengkapi dengan filter dan penjagaan lainnya untuk memastikan bahwa air yang masuk ke sistem bersih dan aman.

Gambar. 2.6 foto filter sea chest

b. Seawater pump

Seawater pump adalah pompa yang berfungsi untuk memompa air laut dari intake sea chest menuju heat exchanger. Pompa ini biasanya dilengkapi dengan fitur untuk memastikan bahwa air yang dipompa cukup untuk memenuhi kebutuhan pendingin.

Gambar. 2.7 foto sea water pump

c. Heat exchanger

Heat exchanger adalah komponen yang berfungsi untuk mentransfer panas dari mesin dan peralatan kapal ke dalam air laut yang mengalir melaluinya. Suhu air laut akan meningkat dan akan dialirkan keluar dari heat exchanger dan masuk ke sea chest lagi untuk mengambil suhu yang lebih rendah.

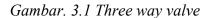
Gambar. 2.8 Heat exchanger

d. Cooling water circulating pump

Cooling water circulating pump adalah pompa yang berfungsi untuk memompa air pendingin yang telah melewati heat exchanger ke dalam sistem pendingin mesin dan peralatan kapal. Pompa ini harus memiliki daya pompa yang cukup untuk memastikan bahwa semua komponen dalam sistem pendingin teraliri dengan cukup air laut yang dingin.

Gambar. 2.9 Cooling water circulating pump

e. Expansion tank

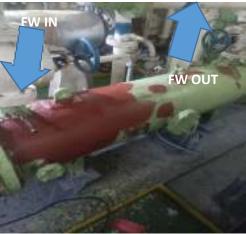

Expansion tank adalah tempat penampungan sementara air pendingin yang akan dialirkan ke dalam sistem pendingin mesin dan peralatan kapal. Tank ini dilengkapi dengan berbagai sensor dan penjagaan lainnya untuk memastikan bahwa air yang dialirkan ke dalam sistem cukup dan aman.

SPARSITE OF

Gambar. 3.0 Expansion tank

f. Three way valve

Three way valve adalah katup yang berfungsi untuk mengatur jumlah aliran air pendingin yang masuk ke dalam fresh water cooler untuk memastikan suhu yang stabil dan aman.



g. Piping and fittings

Piping and fittings adalah komponen yang berfungsi sebagai saluran untuk mengalirkan air laut dari intake sea chest ke dalam heat exchanger dan dari heat exchanger ke dalam sistem pendingin mesin dan peralatan kapal. Komponen ini harus terbuat dari bahan yang tahan korosi dan tahan terhadap tekanan yang tinggi.

Gambar. 3.2 Piping and fittings

Berdasarkan pengamatan penulis, kerusakan yang sering terjadi pada sistem sirkulasi air pendingin pada saat kapal beroperasi adalah penyerapan panas pada fresh water cooler tidak memenuhi standar dan tekanan air pendingin menurun. Penyerapan panas pada umumnya dibagi menjadi 3 cara yaitu:

1) Konveksi (aliran).

Perpindahan panas secara konveksi atau hantaran merupakan perpindahan panas melalui aliran yang zat perantaranya ikut berpindah. Jika partikel berpindah dan mengakibatkan panas merambat, akan terjadi konveksi. Konveksi terjadi padazat cair dan gas (udara/angin).

2) Konduksi (rambatan).

Kondukasi merupakan perpindahan panas melalui zat padat yang tidak ikut mengalami perpindahan. Apabila ujung sebatang logam dipanaskan di atas api, maka ujung yang lain akan menjadi panas. Hal ini menunjukkan panas berpindah ke bagian yang memiliki suhu lebih rendah.

3) Radiasi (pancaran).

Radiasi atau pancaran adalah perpindahan energi panas dalam bentuk gelombang elektromagnetik.

Yang dipakai pada fresh water cooler adalah penyerapan panas konveksi dimana air tawar yang telah mendinginkan mesin induk menuju ke fresh water cooler Dalam fresh water cooler maka panas air tawar ini menyerahkan panasnya karena suhu air laut lebih rendah.