ANALISA FAKTOR PENYEBAB KERUSAKAN EJECTOR PUMP FRESH WATER GENERATOR DI KAPAL MT. IMMANUEL X

SUNARTO

NIT: 20.42.085

TEKNIKA

PROGRAM PENDIDIKAN DIPLOMA IV PELAYARAN
POLITEKNIK ILMU PELAYARAN MAKASSAR
TAHUN 2024

PERNYATAAN KEASLIAN SKRIPSI

Nama : Sunarto

NIT : 20.42.085

Program Studi : Teknika

Dengan ini saya menyatakan bahwa skripsi berjudul:

Analisa Faktor Penyebab Kerusakan Ejector Pump Fresh Water Generator Di Kapal MT.IMMANUEL X

merupakan produk kreatif saya sendiri. Kecuali yang disebutkan sebagai kutipan secara eksplisit, semua konsep yang tercantum dalam skripsi ini adalah ide-ide yang saya buat sendiri.

Saya siap menerima sanksi yang berlaku di Politeknik Ilmu Pelayaran Makassar jika pernyataan ini terbukti salah.

.

Makassar,14 November 2024

SUNARTO

NIT: 20.42.85

ANALISA FAKTOR PENYEBAB KERUSAKAN EJECTOR PUMP FRESH WATER GENERATOR DI KAPAL MT. IMMANUEL X

Skripsi

Sebagai Salah Satu Syarat Untuk Menyelesaikan Pendididkan Diploma IV Pelayaran

> Program studi Teknika

Disusun dan diajukan oleh:

SUNARTO NIT: 20.42.085 TEKNIKA

PROGRAM PENDIDIKAN DIPLOMA IV PELAYARAN
POLITEKNIK ILMU PELAYARAN MAKASSAR
TAHUN 2024

SKRIPSI

ANALISA FAKTOR PENYEBAB KERUSAKAN EJECTOR PUMP FRESH WATER GENERATOR DI KAPAL MT. IMMANUEL X

Disusun dan Diajukan oleh:

SUNARTO

NIT. 20.42.085

Telah dipertahankan di depan Panitia Ujian Skripsi

Pada tanggal 14 November 2024

Menyetujui:

Pembimbing I

Pembimbing II

Ir.Alberto, S.S.T. M.Mar.E., M.A.P

Agustina Setyaningsih, S.SI., M.PD

NIP: 19760409 200604 1 001

NIP.198508082009122004

Mengetahui:

An. Direktur

Politeknik Ilmu Pelayaran Makassar

Ketua Program Studi Teknika

Pembantu Direktur I

Cant Faisal Saransi, M.T. M.Mar

NIP. 19756329 199903 1 002

Ir. Alberto, S.Si.T. M.Mar.E., M.A.P

NIP. 19760409 200604 1 001

PRAKATA

Penulis mengucapkan puji syukur kepada Allah SWT. Berkat rahmat dan karunia-Nya, penulis dapat menyelesaikan skripsi penelitian yang berjudul "Analisa Faktor Penyebab Kerusakan Ejector Pump Fresh Water Generator Di Kapal MT.IMMANUEL X". Skripsi ini disusun sebagai salah satu persyaratan untuk menyelesaikan Program Diploma IV Pelayaran di Politeknik Ilmu Pelayaran Makassar.

Penulis menghadapi banyak kesulitan selama proses penulisan skripsi ini, tetapi mereka berhasil menyelesaikannya berkat bantuan, bimbingan, dan dukungan dari berbagai pihak, baik secara moral maupun material. Penulis benar-benar berterima kasih kepada:

- A. Bapak Capt. Rudy Susanto, M.Pd., sebagai Direktur Politeknik Ilmu Pelayaran Makassar.
- B. Bapak Alberto, S.Si.T., M.Mar.E., M.A.P., sebagai Ketua Jurusan Teknika Politeknik Ilmu Pelayaran Makassar.
- C. Bapak Iswansyah.S.SOS.M.MAR.E, sebagai dosen pembimbing utama dalam penyusunan skripsi proposal, hasil, dan penutup.
- D. Ibu Agustina Setyaningsih, S.SI., M.PD, sebagai dosen pembimbing kedua dalam penulisan skripsi hasil dan penutup.
- E. Seluruh staf dan sivitas akademika Politeknik Ilmu Pelayaran Makassar.
- F. Chief Engineer, Kapten, Masinis II dan III, serta seluruh kru kapal MT.IMMANUEL X.
- G. Terutama untuk kedua orang tua (Syarifuddin dan Sahriyani), kakak, adik, serta teman-teman seangkatan gelombang 61 yang dengan tulus memberikan kasih sayang, cinta, doa, perhatian, serta dukungan moral dan material. Penulis berharap dapat menjadi anak yang membanggakan dan membawa nama baik keluarga.

Penulis sangat mengharapkan kritik dan saran yang bermanfaat untuk meningkatkan pengetahuan, terutama tentang permesinan kapal.

Semoga tugas akhir ini bermanfaat, memperluas wawa-san, dan memberikan inspirasi dan informasi bagi Taruna-Taruni Politeknik Ilmu Pelayaran Makassar dan para pembaca pada umumnya.

.

Makassar, 14 November 2024

SUNARTO

NIT. 20.42.085

ABSTRAK

SUNARTO,2023 ANALISIS FAKTOR PENYEBAB KERUSAKAN EJECTOR PUMP FRESH WATER GENERTAOR DIKAPAL MT IMMANUEL X (Dibimbing DAN AGUSTINA SETYANINGSIH.

Dengan mengubah air laut menjadi air laut bertekanan tinggi, pompa ejector mengurangi tekanan vakum atmosfer pada jet air tawar. Generator air pada ruang vakum menyemprotkan air asin dan udara untuk menciptakan air laut bertekanan tinggi, yang kemudian disedot ke dalam pompa oleh air buangan (brine) dan cangkang garam. Brine bertekanan dari pompa juga dialirkan ke pemanas/evaporator.

Praktik laut (Prala) selama satu tahun sepuluh hari dilakukan penulis di atas kapal IMMANUEL X milik PT. VEKTOR MARITIME. Data penelitian ini diperoleh dari data lapangan (observasi) serta literatur, termasuk buku, manual, dan dokumen yang berkaitan dengan topik tesis.

Hasil penelitian menunjukkan bahwa kebocoran pada sistem pendingin dan kurangnya perawatan pompa ejector menyebabkan kinerja kompresor tidak optimal, merusak komponen pompa ejector, dan mengakibatkan kinerja pompa ejector yang kurang baik.

Kata kunci: Ejector pump, evavorator, kondensor

ABSTRACT

SUNARTO, 2023. ANALYSIS OF THE FACTORS CAUSING DAMAGE TO THE EJECTOR PUMP FRESH WATER GENERATOR ON THE IMMANUEL X ship (supervised by ISWANSYAH,S.SOS.,M.MAR.E DAN AGUTINA SETYANINGSIH,S.SI.,M.PD

By turning seawater into high-pressure seawater, an ejector pump reduces the atmospheric vacuum pressure on a freshwater jet. A water generator in the vacuum chamber sprays saltwater and air to create high-pressure seawater, which is then drawn into the pump by the brine and salt shell. The heater/evaporator also receives the pressurized brine from the pump.

PT. VEKTOR MARITIME's IMMANUEL X was the site of the author's one-year, ten-day sea practice (Prala). Field data (observations) and literature, including books, manuals, and documents pertaining to the thesis topic, provided the data for this study.

According to the study's findings, a cooling system leak and a lack of ejector pump maintenance caused the compressor to perform below par, damaging the ejector's components and resulting in subpar ejector pump performance.

Keywords: Ejector pump, evavorator, condenser

DAFTAR ISI

PERNYATAAN KEASLIAN SKRIPSI	ii
PRAKATA	V
ABSTRAK	vii
ABSTRACT	vii
DAFTAR ISI	xi
BAB I PENDAHULUAN	1
A. Latar Belakang	1
B. Rumusan Masalah	2
C. Batasan Masalah	2
D. Tujuan Penelitian	2
E. Manfaat Penelitian	3
BAB II TINJAUAN PUSTAKA	4
A. Pengertian Ejector Pump	4
B. Fungsi Ejector	5
C. Pompa Ejector	7
D. Steam Jet Ejector	9
E.Ejector Gland Steam	11
F. Komponen - komponen Ejector Pump	12
G.Komponen Bantu Ejector Pump	13
H. Fresh Water Generator	14
I. Kerangka Pikir	17
J. Hipotesis	18
BAB III METODE PENELITIAN	19
A. Waktu dan Tempat Penelitian	19
B Metode Pengumpulan Data	19
C.Jenisdan Sumber Data	19
D.Metode Analisis	20
E.TeknikPengumpulan Data	20
F. Langkah-Langkah Analisa Penelitian	21

BAB IV HASIL PENELITIAN DAN PEMBAHASAN	23
A. Hasil Penelitian	23
B. Data Penelitian	25
C. Analisis Data Penelitian	27
D. Prinsip Kerja FWG	28
E. Gambaran Pengoperasian Ejector pump FWG	30
F.Pembahasan	35
G.Sumber Masalah	38
H. Pemecahan Masalah	39
BAB V KESIMPULAN DAN SARAN	42
A. Kesimpulan	42
B. Saran	42
DAFTAR PUSTAKA	44
LAMPIRAN	45
RIWAYAT HIDUP	46

BAB I

PENDAHULUAN

A. Latar Belakang

Kemajuan pesat dalam ilmu pengetahuan dan teknologi, khususnya di sektor maritim, telah memberikan dampak besar pada upaya transportasi. Akibatnya, kita perlu bersiap untuk meningkatkan kapasitas kita dalam bersaing di pasar tenaga kerja energi global dengan memanfaatkan keterampilan domestik dan internasional. Sampan dan perahu kecil adalah contoh kapal yang dapat memindahkan kargo melalui sungai atau laut. Sebuah kapal biasanya cukup besar untuk membawa kapal-kapal yang lebih kecil, seperti sekoci, meskipun dalam bahasa Inggris terdapat perbedaan antara kapal besar dan kapal kecil. Kapal umumnya tidak dirancang untuk mengangkut kapal lain. Ukuran sebenarnya dari sebuah kapal selalu ditentukan oleh hukum, kebiasaan, dan peraturan setempat.

Fluida pendorong adalah fluida yang bergerak, dan pompa ejektor, juga disebut jet pump atau injector pump, adalah perangkat yang menggunakan energi dari fluida lain untuk menghasilkan aliran fluida. Pompa ejektor memberikan tinjauan dan panduan tentang berbagai jenis, karakteristik, biaya, dan daya tahan. Meskipun banyak digunakan dalam aplikasi komersial dan industri, prinsip kerjanya cukup sederhana.

Efek Venturi adalah prinsip dinamika fluida yang menjadi dasar kerja pompa ejektor. Ketika fluida mengalir melalui celah sempit, efek Venturi menyebabkan kecepatan fluida meningkat dan tekanannya menurun. Komponen utama dari pompa ejektor adalah nozzle, throat, diffuser, dan suction inlet.

Secara keseluruhan, pompa ejektor menggunakan tekanan dan kecepatan yang dihasilkan oleh fluida awal untuk meningkatkan laju aliran fluida yang dipasok. Pompa ejektor memiliki sejumlah keunggulan, seperti tidak memerlukan sumber daya eksternal, tetapi

juga memiliki kelemahan, seperti efisiensi rendah dan ketergantungan pada karakteristik fluida. Pompa ejektor sering digunakan dalam berbagai pengaturan industri, termasuk proses kimia, sistem irigasi, dan sistem perpipaan.

Penulis ingin mengamati dan membahas sebuah proposal penelitian berjudul "Analisa Faktor Penyebab Kerusakan Ejector Pump Fresh Water Generator Di atas Kapal MT. IMMANUEL X" sebagaimana dijelaskan dalam penjabaran di atas.

B. Rumusan Masalah

Pernyataan masalah pada pompa ejektor di kapal MT Immanuel X disebabkan oleh adanya penyumbatan pada pompa fresh water generator. Pertanyaan penelitian yang diajukan, seperti yang dijelaskan pada latar belakang di atas, adalah: Apa saja faktor penyebab kerusakan pada pompa ejektor fresh water generator di atas kapal MT IMMANUEL X?

C. Batasan masalah

Lingkup penelitian ini dibatasi pada berkurangnya produksi air tawar di kapal MT Immanuel X akibat berbagai masalah pada pompa ejektor. Kerusakan pada pompa ejektor yang disebabkan oleh penyumbatan pada fresh water generator pump di kapal MT IMMANUEL X menjadi fokus utama penelitian ini, sesuai dengan pertanyaan penelitian di atas.

D. Tujuan Penelitian

Berikut adalah tujuan dari penelitian ini:

- Menentukan penyebab kinerja buruk pada Pompa Ejektor Fresh Water Generator.
- 2. Menentukan cara mencegah dan mengatasi masalah terkait penumpukan kotoran pada pompa ejektor fresh water generator.

E. Manfaat Penelitian

Penelitian ini memberikan kesempatan bagi penulis untuk mempraktikkan dan melakukan eksperimen dengan baik. Teori yang diperoleh dan pengetahuan baru yang didapatkan sangat relevan dengan masalah yang terjadi saat pompa air tawar tidak berfungsi. Penelitian ini diharapkan bermanfaat bagi individu yang bekerja di bidang ilmu pengetahuan, pengetahuan, dan transportasi.

1. Secara teoris

Penelitian ini bertujuan untuk memperluas pemahaman pembaca tentang kinerja buruk pompa ejektor Fresh Water Generator sebagai alat atau perangkat untuk produksi air tawar. Selain itu, penelitian ini membantu pembaca memahami penyebab kinerja buruk pompa ejektor Fresh Water Generator dalam proses produksi air tawar.

2. Secara peraktis

Baik secara teoretis maupun praktis, penelitian ini diharapkan membantu pembaca dan taruna lainnya yang akan bekerja di kapal di masa depan untuk memahami cara menangani masalah terkait kinerja buruk pompa ejektor fresh water generator.

BAB II

TINJAUAN PUSTAKA

A. Pengertian Ejector Pump

Wahyu Ari [2022] menyatakan bahwa bagian penting dari sebuah freshwater generator (FWG) adalah pompa ejektor. Ejektor berfungsi untuk mengalirkan air asin (brine), mengeluarkan udara, dan menciptakan vakum di ruang evaporasi guna menghilangkan air asin dari evaporator dan kondensor. Selain pompa air, cangkang air asin dan garam juga dapat menarik air laut ke dalamnya. Ejektor mengalirkan air asin, melepaskan udara, dan menghasilkan vakum di ruang evaporasi untuk membuang air asin dari evaporator dan kondensor.

Menurut Willyanto Anggono [2023], pompa adalah jenis mesin dan fluida yang digunakan di berbagai industri yang membutuhkan fluida bertekanan tinggi. Tujuan menggunakan ejektor adalah untuk mencapai kapasitas pemompaan tinggi dalam aliran sekunder, yang dikenal sebagai aliran hisap.

Pompa ejektor adalah pompa sentrifugal satu tahap yang memasok air dan filter garam melalui semburan air dan air asin ke kondensor. Sebagian air laut digunakan sebagai air make-up untuk evaporasi. Agar air laut bertekanan rendah dapat masuk ke pompa, pompa ejektor harus dipasang secara vertikal dan dalam posisi rendah. Tekanan masuk filter harus termasuk dalam tekanan minimum pompa sebesar 0,2 bar. Dengan demikian, pompa ejektor harus ditempatkan rendah dan vertikal agar air laut bertekanan rendah dapat masuk ke dalam pompa.

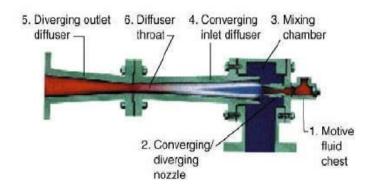
Menurut Dr. Ram Prasad, pompa ejektor FWG adalah sistem perpipaan yang dirancang untuk menggunakan prinsip ejeksi fluida guna mengubah gas flare menjadi sumber energi yang bermanfaat.

Profesor Mei-Hsiu Lai mengklaim bahwa pompa ejektor FWG adalah cara inovatif untuk menangani limbah gas flare karena

menggabungkan teknologi ejektor untuk menghasilkan aliran gas yang memungkinkan pemulihan dan pemanfaatan gas buang.

Menurut Engineer Kimiko Yamamoto, pompa ejektor FWG adalah perangkat yang menggunakan energi tekanan gas buang untuk menghasilkan daya dorong yang diperlukan untuk mengekstraksi dan memindahkan gas di lingkungan industri.

Dr. Chen Wei menyatakan bahwa pompa ejektor FWG adalah solusi praktis yang mengumpulkan dan memanfaatkan gas yang sebelumnya terbuang dengan menarik gas flare melalui aliran vakum yang dihasilkan oleh prinsip ejeksi fluida. Engineer Kimiko Yamamoto menambahkan bahwa pompa ejektor FWG adalah mesin yang menghasilkan daya dorong yang dibutuhkan untuk mengekstraksi dan memindahkan gas buang dalam lingkungan industri dengan memanfaatkan energi tekanan gas tersebut.


B. Fungsi Ejector

Ejektor adalah alat yang digunakan untuk mengeluarkan udara atau gas yang tidak dapat dimampatkan dari suatu ruang. Ejektor bekerja mirip dengan kompresor, yang menciptakan vakum melalui tekanan tinggi dan aliran melalui nozzle. Di sekitar posisi idle, uap disuntikkan melalui nozzle bertekanan tinggi untuk mengurangi gesekan antara udara dan gas.

Konversi energi kinetik menjadi energi tekanan menyebabkan tekanan meningkat di atas tekanan hisap setelah campuran melewati tabung emitter.

Ejektor juga dapat digunakan untuk memasukkan udara atau gas lain yang tidak dapat dimampatkan ke dalam suatu ruang. Gaya penggeraknya serupa dengan kompresor bertekanan tinggi yang bekerja melalui nozzle. Nozzle atas menyuntikkan uap untuk mencegah gesekan antara udara dan gas di sekitar posisi idle. Tekanan meningkat di atas tekanan hisap setelah campuran melewati tabung emitter karena energi kinetik diubah menjadi energi tekanan.

Gambar 2.1 ejector component parts

Sumber: http://www.ejectorcomponentparts.com

Alat untuk memasukkan udara atau gas yang tidak dapat dimampatkan ke dalam suatu ruang disebut ejektor. Gaya penggeraknya mirip dengan kompresor bertekanan tinggi yang mengalir melalui nosel. Nosel atas menyuntikkan uap untuk mencegah gesekan udara dan gas di sekitar posisi diam.

Tekanan naik di atas tekanan hisap setelah campuran melewati tabung pemancar. Gaya penggeraknya mirip dengan kompresor bertekanan tinggi yang bekerja melalui nosel. Energi kinetik diubah menjadi energi tekanan, itulah sebabnya hal ini terjadi.

- 1. Sistem uap yang digerakkan oleh turbo generator
- 2. Sistem penyaring air tawar bertekanan rendah
- 3. Sistem pembuangan untuk pemanas kondensor

Air atau cairan lain juga dapat dipompa menggunakan prinsip ejektor, yang menggunakan semburan uap berkecepatan tinggi untuk menciptakan penurunan tekanan.

Menurut Dr. Ram Prasad, pompa ejektor FWG adalah sistem perpipaan yang dirancang untuk menggunakan prinsip ejeksi fluida guna mengubah gas flare menjadi sumber energi yang berguna.

Profesor Mei-Hsiu Lai menyatakan bahwa pompa ejektor FWG adalah cara kreatif untuk menangani limbah gas flare karena menggabungkan teknologi ejektor untuk menghasilkan aliran gas yang memungkinkan pemulihan dan pemanfaatan gas buang.

Dalam lingkungan industri, pompa ejektor FWG dapat didefinisikan sebagai perangkat yang menggunakan energi tekanan gas buang untuk menghasilkan daya dorong yang dibutuhkan untuk mengekstraksi dan memindahkan gas, menurut Engineer Kimiko Yamamoto.

Menurut Dr. Chen Wei, pompa ejektor FWG adalah cara efektif untuk mengumpulkan dan memanfaatkan gas yang sebelumnya terbuang dengan menggunakan prinsip ejeksi fluida untuk menciptakan aliran vakum yang dapat menarik gas flare.

C. Pompa Ejector

1. Prinsip

Pompa ini menekan air laut dalam pipa pembuangan air asin bertekanan tinggi, menurut Verando [2019]. Air laut kemudian dialirkan melalui generator baru di kapal setelah udara dan air asin diekstraksi dari evaporator dan kondensor. Selain itu, air laut diubah menjadi air tawar melalui proses penguapan.

2. Cara Kerja

Aliran fluida kedua masuk ke pompa ejektor jet ketika fluida melewati venturi, menciptakan daya hisap. Aliran medium yang digunakan untuk menarik fluida ke atas menyebabkan perubahan tekanan pada nosel. Medium ini dapat berupa cairan atau gas. Perubahan tekanan pada nosel disebabkan oleh aliran medium yang digunakan untuk menarik fluida ke atas. Karena pompa ini tidak memiliki komponen bergerak, konstruksinya sangat sederhana. Namun, pompa ini tidak efektif dan efisien karena desain dan materialnya yang sangat dasar.

Gambar 2.2 sketsa pompa *ejector*

Sumber: http://www.ejectorpumpsketsa.com

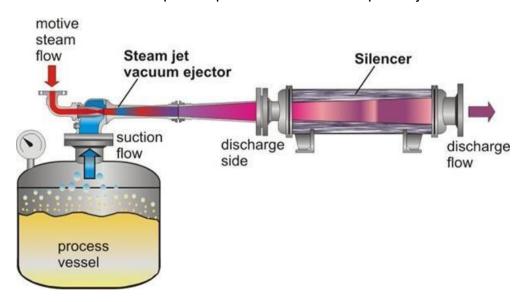
3. Keunggulan dan Kekurangan

a. Keunggulan

- 1) Pompa memiliki umur panjang karena tidak memiliki komponen bergerak.
- 2) Mudah digunakan dan tidak menghasilkan suara.
- 3) Mampu memompa cairan yang mengandung kotoran.
- 4) Sulit tersumbat.
- 5) Dapat berfungsi dengan saluran hisap kering.
- 6) Memiliki kapasitas yang stabil.
- 7) Ringan dan kompak.

b. Kekurangan

1) Effisiensinya rendah.


Sebagian besar energi input hilang dalam bentuk panas dan gesekan, sehingga pompa ejektor umumnya memiliki efisiensi yang lebih rendah dibandingkan pompa mekanis lainnya.

2) Tekanan terbatas

Pompa ejektor hanya dapat digunakan untuk aplikasi dengan tekanan rendah hingga sedang karena biasanya tidak dapat menghasilkan tekanan tinggi.

D. Steam Jet Ejector

Ejektor uap mengompresi gas menggunakan uap atau gas daripada bagian yang bergerak. Gas bertekanan relatif tinggi, seperti uap atau udara, mengalir melalui nosel dalam sebuah jet atau ejektor. Energi tekanan atau potensi diubah menjadi kecepatan atau energi kinetik oleh uap atau udara tersebut. Gas yang akan dipompa atau dievakuasi terperangkap dalam hisapan ejektor oleh jet uap atau gas yang bergerak cepat. Setelah itu, campuran tersebut melewati diffuser, di mana ejektor mengubah energi kinetik menjadi tekanan. Jet uap diubah menjadi energi kinetik oleh pompa jet uap. Proses transfer daya terjadi ketika uap ditarik ke lubang nosel dari impeller. Tekanan berkurang dan kecepatan meningkat saat uap keluar dari nosel. Tekanan keluaran menurun seiring dengan berkurangnya tekanan lingkungan di sekitar mulut saluran pembuangan.

Gambar 2.3 proses pemvacuman blower pada ejector

Sumber: Ejectors and Vacuum Blowers Technology - Steam Jet Vacuum ...

Generator vakum yang menggunakan uap sebagai medium disebut generator uap. Tekanan rendah terbentuk di titik nosel ketika jet cairan, gas, atau uap yang bergerak cepat keluar dari nosel. Gas yang perlu dipindahkan dipercepat, dipindahkan, dan terperangkap dengan cara ini.

Tujuan dari generator uap adalah untuk menjaga ruang yang tersedia dengan menghilangkan gas atau uap dari ruang tersebut. Pompa tanpa bagian yang bergerak disebut pompa uap. Dengan demikian, pompa ini sangat sederhana dan tidak memerlukan pemeliharaan yang rumit.

Uap yang dikeluarkan dalam generator uap dicampurkan dengan air untuk mengembunkannya. Tekanan jet awal, tekanan uap kondensat, dan konstruksi pompa (jumlah tahap kerja) sering memengaruhi gaya pemompaan akhir dan vakum yang tercapai. Dengan mesin uap tunggal, hanya 130 mbar (rasio kompresi sekitar 1:8) yang dapat dicapai pada keadaan idle.

Bagian belakang tambahan dari ejektor jet lebih kecil pada ejektor uap yang terhubung seri, yang terdiri dari beberapa ejektor yang terhubung secara berurutan. Uap disuplai secara terpisah pada setiap tahap. Sebuah kondensor kontak ditempatkan di antara ejektor jet untuk mencegah uap dari tahap sebelumnya mengembun ke dalam tahap berikutnya. Untuk mengembunkan uap dan uap, kontak ini dipanaskan dalam kondensor kontak. Sebuah pompa (seperti pompa saluran samping) atau tabung barometer (dengan ketinggian minimal 10 m) digunakan untuk memfilter air yang keluar dari kondensor.

Pompa tekanan, seperti pompa vakum, sering digunakan untuk melakukan hisapan awal karena generator uap dan sistem seri lainnya tidak memiliki kapasitas hisap yang besar. Generator uap dengan tekanan uap masuk 4 bar biasanya digunakan untuk proses penguapan. Pada tahap sebelumnya, pipa uap digunakan sebagai generator uap, dan pembersih vakum digunakan untuk hisapan awal.

Dengan bantuan pompa, sistem seperti ini dapat mencapai vakum pertama 600 mbar dan vakum akhir 980 mbar.

Karena uap akhir yang tersisa biasanya adalah uap yang dapat larut, pompa vakum akhir yang lebih baik (abs 0,7 mbar) dapat diperoleh jika material yang dipindahkan dari tahap awal tidak terkompresi (dievakuasi dengan cepat). Vakum akhir pada posisi hisap yang diperoleh dengan ejektor uap kompaun ditentukan oleh tekanan uap kondensat dan sekitar 4 mbar (-996 mbar).

Ejektor jet uap pada filter yang beroperasi pada kecepatan idle tinggi (di atas 5 mbar) harus didinginkan untuk menghindari pembentukan es dari titik beku air yang dilaluinya. Pemanas jejak, yaitu sistem kumparan yang melingkari tubuh ejektor jet, dapat menyediakan panas. Pemanas jejak pada model saat ini dibuat untuk sepenuhnya menutupi dinding ejektor jet; untuk kinerja optimal, perangkat ini perlu dipasang dengan erat pada dinding.

Seperti pompa, ejektor jet uap memiliki kemampuan untuk menarik cairan atau uap. Tergantung pada kebutuhan pompa vakum, yang disesuaikan dengan jumlah uap dan air, generator uap tiga tahap atau empat tahap biasanya digunakan secara bersamaan. Metode yang paling banyak digunakan adalah uap jenuh kering pada tekanan minimal 10 bar.

E. Ejector Gland Steam

Gland steam ejector menjaga agar saluran masuk uap tetap dalam kondisi vakum sehingga siap untuk masuk ke ruang turbin. Satusatunya cara untuk mengontrol pembuangan air secara lokal dan aliran uap ke gland adalah dengan membuka dan menutup katup penutup pada pipa pembuangan secara manual. Jika tekanan uap terlalu tinggi atau terlalu rendah, lampu indikator TCP atau UCD akan menyala.

Keuntungan menggunakan steam ejector untuk melepaskan gas ke kondensor adalah sebagai berikut:

- 1. Konstruksi yang mudah dan efektif
- 2. Sederhana untuk digunakan
- 3. Mudah dalam perawatan

Namun, efisiensi emisi uap yang rendah membuatnya tidak cocok untuk digunakan dengan gas dalam jumlah besar. Selain itu, dalam pembangkit listrik tenaga panas bumi, energi akan menurun seiring penurunan tekanan kerja sumur, dan tekanan pada kondensor juga akan berkurang karena tekanan uap buang melemah.

Untuk menciptakan ejector dengan tekanan uap hanya 2-4 kg/cm² dan tekanan vakum kondensor 100-200 mmHg abs untuk salju, Mitsubishi berhasil mengurangi emisi uap dengan hanya menggunakan satu tahap.

F. Komponen-Komponen Ejector Pump

Menjaga kondisi komponen pompa ejektor sangat penting untuk memastikan kinerja yang optimal. Berikut adalah berbagai bagian yang membentuk pompa ejektor sebelum membahasnya lebih jauh:

- Nozzle: Merupakan komponen utama pompa ejektor. Energi tekanan dari fluida penggerak diubah menjadi aliran kecepatan tinggi melalui nozzle. Nozzle juga berfungsi sebagai tempat fluida hisap disuntikkan ke dalam sistem.
- Diffuser: Setelah melewati nozzle, fluida hisap masuk ke diffuser.
 Diffuser mengubah aliran kecepatan tinggi menjadi tekanan yang lebih tinggi. Diffuser berbentuk kerucut sering digunakan untuk meningkatkan tekanan dan memperlambat aliran fluida.
- Casing: Rumah pompa ejektor dirancang khusus untuk menciptakan kondisi aliran fluida yang optimal. Rumah ini menghasilkan tekanan yang diperlukan dalam sistem dan mengarahkan aliran fluida dengan bentuk melengkungnya.
- 4. Suction Chamber: Pompa ejektor menarik fluida hisap ke dalam ruang hisap. Untuk menjaga aliran fluida tetap satu arah dan

- mencegah aliran balik, ruang ini biasanya dilengkapi dengan katup periksa (check valve).
- 5. Drive Fluid Inlet: Merupakan saluran masuk yang menyediakan fluida penggerak untuk pompa ejektor. Fluida penggerak ini bisa berupa udara, uap, atau cairan bertekanan tinggi, tergantung pada jenis pompa ejektor yang digunakan.
- Outlet: Fluida yang dipompa keluar dari sistem melalui outlet.
 Biasanya, outlet ini terhubung dengan sistem pemrosesan atau transfer lainnya.
- 7. Vacuum Connection: Beberapa pompa ejektor dilengkapi dengan koneksi vakum tambahan untuk terhubung ke sistem vakum eksternal.

G. Komponen Bantu Ejector Pump

- 1. Nozzle: Saat fluida masuk ke pompa ejektor, nozzle mempercepat alirannya dan mengarahkannya ke arah ruang ejektor. Nozzle berkontribusi pada terciptanya zona tekanan rendah di ruang ejektor.
- 2. Diffuser: Diffuser, yang terletak setelah ruang ejektor, memperlambat aliran fluida yang keluar dari ruang tersebut. Dengan mengubah energi kinetik aliran menjadi energi potensial, diffuser meningkatkan tekanan fluida saat keluar.
- 3. Throat: Area antara ruang ejektor dan nozzle yang memiliki diameter lebih kecil daripada keduanya disebut throat. Throat membantu menciptakan zona tekanan rendah di ruang ejektor dan mempercepat aliran fluida.
- 4. Pipa Hisap (Suction Pipe): Fluida masuk ke pompa ejektor melalui pipa hisap. Pipa hisap terhubung ke nozzle atau saluran masuk pompa ejektor.
- 5. Pipa Pembuangan (Discharge Pipe): Fluida yang telah dipompa dikeluarkan dari pompa ejektor melalui pipa pembuangan. Pipa pembuangan terhubung ke saluran keluar pompa ejektor.

- 6.Katup (Valve): Aliran fluida masuk dan keluar dari pompa ejektor dikontrol oleh katup. Katup pembuangan mengatur aliran fluida pada saluran keluar, sedangkan katup hisap mengatur aliran fluida pada saluran masuk.
- 7. Fitting: Komponen seperti elbow, tee, dan coupling adalah contoh fitting yang digunakan untuk menghubungkan pipa dan komponen lainnya dalam pompa ejektor.

H. Fresh Water Generator (FWG)

1. Pengertian

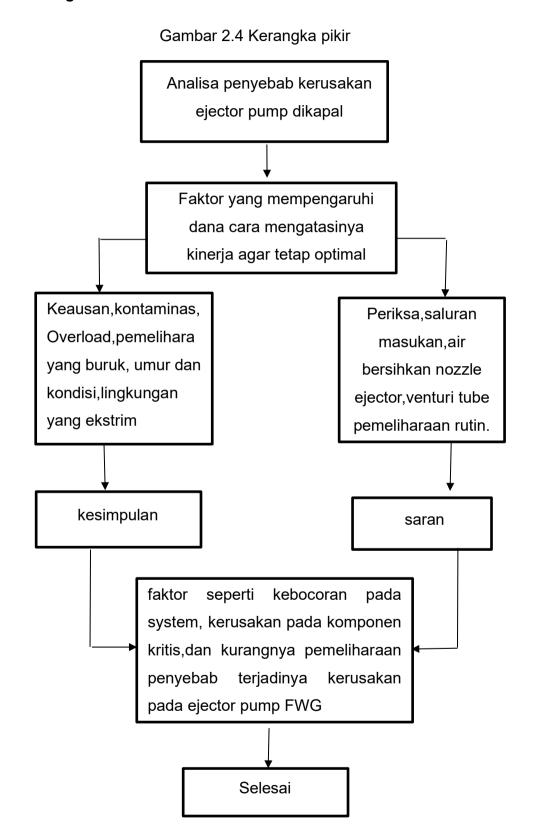
Proses pembuatan air tawar menggunakan *Freshwater Generator* (FWG) melibatkan penguapan air laut di dalam evaporator dan mengondensasi uapnya di distiller atau kondensor untuk menghasilkan air hasil kondensasi, yang disebut kondensat. FWG adalah salah satu peralatan bantu (auxiliary equipment) yang penting di atas kapal. Hal ini disebabkan oleh kemampuan FWG untuk menghasilkan air tawar yang dapat digunakan untuk minum, memasak, mencuci, bahkan untuk mendinginkan mesin-mesin penting yang membutuhkan air tawar.

Dalam FWG, air tawar biasanya dihasilkan menggunakan metode penguapan. Air laut diuapkan dengan menggunakan panas dari sumber panas tertentu untuk menghasilkan air tawar. Sumber panas yang digunakan biasanya berasal dari panas buangan dari jaket mesin utama, seperti kepala silinder, dengan suhu keluaran jaket sekitar 70°C. Namun, suhu ini tidak ideal untuk penguapan karena, pada tekanan atmosfer, air menguap pada suhu 100°C. Oleh karena itu, untuk memproduksi air tawar pada suhu 70°C, tekanan atmosfer harus dikurangi dengan menciptakan ruang vakum di tempat penguapan berlangsung.

Selain itu, air laut yang dingin dan ruang terbatas untuk penguapan pada suhu rendah akan membantu proses penguapan sehingga uap air dapat terkondensasi dan dikumpulkan dalam wadah penampung. Saat ini, banyak kapal menggunakan metode *reverse osmosis* untuk menghasilkan air tawar, terutama pada kapal penumpang di mana kebutuhan akan air tawar sangat penting.

- a. Sularno et al. [2019]: Freshwater generator adalah peralatan bantu pesawat. Peralatan bantu adalah semua peralatan yang berada di dalam pesawat atau ruang mesin, kecuali server, yang berfungsi untuk mendukung operasi server dan, pada akhirnya, operasi kendaraan yang aman.
- b. Suparwo [2016]: Freshwater generator adalah mesin atau unit yang mengubah air asin menjadi air tawar.
- c. London [2019]: Freshwater generator adalah alat di pesawat yang menggunakan jaringan penguapan air laut untuk menghasilkan air tawar selama proses penguapan. Kondensasi mendinginkan air laut di dalam distiller/kondensor, memungkinkan terbentuknya kondensat.
- d. Daryanto Daryanto [2023]: Freshwater Generator (FWG) adalah alat yang menggunakan penguapan dan pendinginan untuk mengubah air asin menjadi air tawar.

2. Prinsip Kerja Fresh Water Generator


Menurut Sasakura Engineering Co., sebuah pompa ejektor menggerakkan ejektor gabungan untuk air asin atau udara, yang menciptakan vakum di dalam sistem. Proses ini menurunkan suhu penguapan air umpan (air laut yang akan diubah menjadi air tawar). Air umpan, atau yang dikenal sebagai air laut, masuk ke bagian evaporator melalui sebuah orifice, sebelum didistribusikan ke setiap bagian pelat evaporator kedua.

Air pemanas yang berasal dari keluaran air pendingin mesin utama kemudian dialirkan ke saluran-saluran samping evaporator. Akibatnya, air pemanas tersebut memanaskan air umpan (air laut) yang berada di dalam saluran evaporator saat proses distribusi berlangsung.

Setelah mencapai suhu penguapan yang lebih rendah dari titik didih pada tekanan atmosfer karena adanya proses vakum, sebagian air umpan (air laut) mulai menguap. Campuran uap dan brine (air asin) yang dihasilkan kemudian memasuki bejana separator, di mana brine dipisahkan dari uap, dan hanya uap yang diteruskan ke ejektor udara atau ejektor brine gabungan.

Uap tersebut selanjutnya memasuki setiap bagian pelat kedua di bagian kondensor setelah melewati demister. Di bagian kondensor, air laut menyerap panas dari uap yang terkondensasi setelah didistribusikan ke saluran yang tersisa oleh pompa ejektor atau pompa pendingin gabungan. Air tawar yang dihasilkan dari proses kondensasi ini kemudian dipompa oleh pompa air tawar menuju tangki penyimpanan.

H. Kerangka Pikir

I. Hipotesis

Berdasarkan isu utama yang disebutkan di atas, penulis mengembangkan teori-teori berikut:

- 1. Kinerja fresh water generator diduga menurun akibat pemeliharaan pompa ejektor yang tidak memadai.
- Sejumlah faktor internal dan eksternal, termasuk pemeliharaan yang buruk, bahan baku yang tidak memenuhi standar, serta tekanan dan suhu operasi yang menyimpang dari spesifikasi desain, dapat merusak pompa ejektor pada fresh water generator kapal. Faktorfaktor ini memiliki dampak besar terhadap umur dan kinerja pompa ejektor tersebut.

BAB III

METODE PENELITIAN

A. Waktu dan Tempat Penelitian

Penelitian ini dilakukan selama pelatihan praktik laut penulis di atas kapal, yang memberikan kesempatan untuk mengamati langsung sistem yang menjadi objek penelitian.

B. Metode Pengumpulan Data

Dalam penulisan skripsi ini, penulis menggunakan beberapa metode pengumpulan data sebagai berikut:

1 .Metode Observasi

Penulis mengumpulkan data dengan membaca berbagai literatur, buku referensi, dan dokumen lainnya yang relevan dengan topik penelitian. Studi pustaka ini digunakan untuk mendukung analisis dan memberikan landasan teori yang solid.

2. Metode Pustaka (*Library Research*)

Penulis melakukan pengamatan langsung terhadap objek penelitian selama pelatihan praktik laut. Metode ini memungkinkan penulis untuk mengamati kondisi nyata sistem fresh water generator dan prosedur pemeliharaannya.

C. Jenis dan Sumber Data

1. Jenis Data

Data yang digunakan dalam penelitian ini bersifat kualitatif. Data tersebut diperoleh melalui variabel seperti informasi tertulis, percakapan lisan, serta dokumen terkait.

2. Sumber Data

Selama penyelesaian disertasi, sumber data berikut digunakan:

a.Data Primer

Data awal yang diperoleh melalui observasi langsung dan pencatatan fenomena terkait substansi penelitian selama pelatihan praktik laut.

b. Data Sekunder

Data pendukung yang digunakan untuk melengkapi dan menjelaskan data primer. Data ini diperoleh dari buku referensi, manual peralatan kapal, jurnal ilmiah, serta dokumen lain yang relevan.

D. Metode Analisis

Penulis menggunakan metode deskriptif untuk menganalisis data. Metode ini digunakan untuk menggambarkan kejadian atau fenomena yang terjadi di kapal, khususnya yang terkait dengan pemeliharaan sistem fresh water generator. Berdasarkan hasil observasi dan data yang tersedia, penulis menyusun solusi yang diharapkan dapat memberikan kontribusi dalam menyelesaikan permasalahan yang dibahas dalam penelitian ini.

E. Teknik Pengumpulan Data

Untuk menyusun skrpsi pada penelitian ini, penulis menggunakan beberapa teknik pengumpulan data berikut:

1. Metode Observasi

Penulis melakukan pengamatan langsung terhadap objek penelitian, terutama dalam mengidentifikasi awal potensi bahaya atau masalah yang mungkin timbul dari modifikasi sistem generator tambahan di kapal.

2. Metode wawancara (*interview*)

Untuk mendapatkan informasi yang lebih mendalam, penulis melakukan wawancara dengan pemangku kepentingan di kapal, seperti kepala kamar mesin (chief engineer) atau teknisi mesin kapal.

3. Metode Studi Dokumentasi

Teknik ini digunakan untuk memperoleh landasan teori dalam membahas masalah yang diteliti. Penulis membaca dan mempelajari literatur, buku, serta dokumen-dokumen terkait permasalahan yang diangkat. Apabila ditemukan permasalahan, teknik studi dokumen ini digunakan untuk memperjelas data dan menjadi dasar teori dalam penelitian yang dilakukan.

F. Langkah Langkah Analisa Penelitian

Tabel 3.1 Jadwal Penelitian

		Tahun 2021 Bulan											
No	Kegiatan												
		1	2	3	4	5	6	7	8	9	10	11	12
	Pengumpulan												
1	Buku												
	Referensi												
2	Pemilihan												
	Judul												
3	Penyusunan												
	Proposal dan												
	Bimbingan												
4	Seminar												
	Proposal												

	Perbaikan										
5	Seminar										
	Proposal										
6	Pengambilan										
	Data (PRALA)										
Tahun 2022											
	Pengambilan										
7	Data										
	(PRALA)										
			Ta	ahu	ın 2	023	3				
	Pengambilan										
8	Data										
	(PRALA)										
Tahun 2024											
	Pengambilan										
9	Data										
	(PRALA)										